Issue 1, 2023, p. 40-55

Review

Review on the use of HTS windings in electric machine designs

E.P. Kurbatova

Moscow Power Engineering Institute (MPEI), Krasnokazarmennaya, 14, 111250, Moscow, Russia

e-mail: kurbatovaep@mail.ru

DOI: https://doi.org/10.62539/2949-5644-2023-0-1-40-55

Abstract

The article presents the overview of application of high-temperature superconducting (HTS) windings in the designs of electrical machines. The main types of designs with the use of HTS both as field windings and armature windings published over the past 15–20 years are shown. HTS machines are compared with traditional designs.

Keywords: high-temperature superconductivity; windings; electrical machines.

References

[1] A. Molodyk, et al., Sci. Rep. 11, 2084 (2021).

[2] J. H. Kim, et al., J. Supercond. Nov. Magn. 28, 671 (2014).

[3] M. Oomen, et al., Phys. C: Supercond. Appl. 482, 111 (2012).

[4] T. Zhang, et al., Cryogenics 51, 380 (2011).

[5] T. D. Le, et al., IEEE Trans. Appl. Supercond. 25, 3800305 (2015).

[6] F. Marignetti, G. Rubino, Energies 16, 2994 (2023).

[7] J. Sim, et al., IEEE Trans. Appl. Supercond. 14, 916 (2004).

[8] T. Song, et al., IEEE Trans. Appl. Supercond. 17, 1611 (2007).

[9] T. Nakamura, et al., IEEE Trans. Appl. Supercond. 25, 5202304 (2015).

[10] T. Nakamura, et al., IEEE Trans. Appl. Supercond. 31, 4, 5202805 (2021).

[11] T. Nakamura, et al., Supercond. Sci. Tech. 24, 015014 (2011).

[12] D. Sekiguchi et al., IEEE Trans. Appl. Supercond. 22, 5200904 (2012).

[13] T. Nakamura, et al., IEEE Trans. Appl. Supercond. 29, 5203005 (2019).

[14] T. Nakamura, et al., IEEE Trans. Appl. Supercond. 33, 5200205 (2023).

[15] K. Ozaki, et al., IEEE Trans. Appl. Supercond. 30, 3602605 (2020).

[16] B. Liu, et al., Energies 11, 792 (2018).

[17] C.T. Calvin, et al., Energy Reports 9, 1124 (2023).

[18] A. B. Abrahamsen, et al., Supercond. Sci. Technol. 23, 034019 (2010).

[19] J. J. Scheidler, et al., AIAA SCITECH 2022 Forum, AIAA 2022-0445 (2022).

[20] H. Ohsaki, et al., 4th International Conference on Clean Electrical Power (ICCEP 2013), 395 (2013).

[21] R. Köster, et al., Elektrotech. Inftech. 140, 324 (2023).

[22] Y. Guan, et al., IEEE Trans. Appl. Supercond. 27, 5204211 (2017).

[23] I. Kolchanova and V. Poltavets, 2021 International Conference on Electrotechnical Complexes and Systems (ICOECS), 529 (2021).

[24] T. D. Lea, et al. Progress in Superconductivity and Cryogenics 17, 18 (2015).

[25] V.N. Antipov et al., Elektrichestvo, 10, 59 (2020).

[26] K. Kovalev, et al., E3S Web of Conferences 124, 01043 (2019).

[27] I. Marino, et al., Supercond. Sci. Tech. 29, 024005 (2015).

[28] X. Song, et al., IEEE Trans. Energy Conversion 35, 1697 (2020).

[29] Y. Xu, et al., IEEE Trans. Appl. Supercond. 25, 5204006 (2015).

[30] Y. Liu, Design of a superconducting DC wind generator”. Publisher: ‎Karlsruher Institut fuer Technologie (2020).

[31] G.-E. Jung, et al., Energies 14, 1386 (2021).

[32] G. Snitchler, et al., IEEE Trans. Appl. Supercond. 15, 2206 (2005).

[33] B. Gamble, et al., IEEE Trans. Appl. Supercond. 21, 1083 (2011).

[34] W. Nick, et al., Physica C: Superconductivity 482, 105 (2012).

[35] H. Moon, et al., Supercond. Sci. Technol. 29, 034009 (2016).

[36] K. Umemoto, et al., Phys. Conf., Ser. 234, 032060 (2010).

[37] T. Yanamoto, et al., IEEE Trans. Appl. Supercond. 27, 5204305 (2017).

[38] H. Karmaker, et al., IEEE Trans. Ind. Appl. 51, 1341 (2015).

[39] W. Nick, et al., IEEE Trans. Appl. Supercond. 17, 2030 (2007).

[40] M. K. Al-Mosawi, et al., IEEE Trans. Appl. Supercond. 15, 2182 (2005).

[41] P. Song, et al., IEEE Trans. Appl. Supercond. 30, 5206905 (2020).

[42] S. Kalsi et al., 2005/2006 IEEE/PES Transmission and Distribution Conference and Exhibition, 899 (2006).

[43] B.B. Gamble et al., IEEE Power Engineering Society Summer Meeting 2, 270 (2002).

[44] S.-K. Baik et al., IEEE Trans. Appl. Supercond. 26, 5206604 (2016).

[45] D.S. Dezhin et al., IOP Conf. Ser.: Earth Environ. Sci. 87, 032007 (2017).

[46] H. Jeon et al., IEEE Trans. Appl. Supercond. 28, 5207605 (2018).

[47] C. W. Bumby et al., Supercond. Sci. Technol. 29, 024008 (2016).

[48] J. Lee et al., IEEE Trans. Appl. Supercond. 28, 5203105 (2018).

[49] M. Iwakuma et al., IEEE Trans. Appl. Supercond. 17, 1607 (2007).

[50] H. Sasa et al., IEEE Trans. Appl. Supercond. 31, 5200706 (2021).

[51] S. Fukuda et al., IEEE Trans. Appl. Supercond. 28, 5207806 (2018).

[52] Y. Terao et al., IEEE Trans. Appl. Supercond. 29, 5202305 (2019).

[53] K. Kovalev et al., J. Phys.: Conf. Ser. 1559, 012137 (2020).

[54] K. Kovalev et al., 2019 International Conference on Electrotechnical Complexes and Systems (ICOECS) (2019).

[55] Y. Xu et al., IEEE Trans. Appl. Supercond. 31, 5201305 (2021).

[56] Y. Terao et al., IEEE Trans. Appl. Supercond. 22, 5201904 (2012).

[57] M. Komiya et al., IEEE Trans. Appl. Supercond. 30, 5206607 (2020).

[58] Y. Liang et al., IEEE Trans. Appl. Supercond. 23, 46 (2013).

[59] S. Miura et al., IEEE Trans. Appl. Supercond. 30, 5204106 (2020).

[60] S. S. Kalsi, IEEE Trans. Appl. Supercond. 24, 47 (2014).

[61] K. L. Kovalev et al. Elektrotekhnicheskie kompleksy i sistemy: Materialy mezhdunarodnoj nauchno-prakticheskoj konferencii 1, 20 (2017).

[62] S. Xue et al., IEEE Trans. Appl. Supercond. 31, 5200410 (2021).

[63] T. Qu et al., Supercond. Sci. Technol. 27, 044026 (2014).

[64] K. Zhang et al., IEEE Trans. Appl. Supercond. 29, 5201205 (2019).

[65] X. Huang et al., IEEE Trans. Magn. 53, 8700204 (2017).

[66] L. Li et al., IEEE Trans. Appl. Supercond. 22, 5200704 (2012).

[67] S. Karami et al., 2018 IEEE Electrical Power and Energy Conference (EPEC) (2018).

[68] H. Sugimoto et al., Journal of Physics: Conference Series 97, 012203 (2008).

[69] Z. Huang et al., IEEE Trans. Appl. Supercond. 24, 4602605 (2014).

[70] A. Patel et al., 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC) (2018).

[71] Y. J. Hwang et al., IEEE Trans. Appl. Supercond. 30, 5202105 (2020).

[72] K. Sivasubramaniam et al., IEEE Trans. Appl. Supercond. 18, 1 (2008).

[73] S. Kalsi et al., IOP Conf. Ser.: Mater. Sci. Eng. 756, 012028 (2020).

[74] Y.J. Hwang, Energies 14, 5658 (2021).

[75] S. Lee et al., IEEE Trans. Appl. Supercond. 18, 717, 2008.

[76] K. Sivasubramaniam et al., IEEE Trans. Appl. Supercond. 19, 1656 (2009).

[77] M. Lokhandwalla et al., 2012 XXth International Conference on Electrical Machines, 751, (2012).

[78] S. Kalsi et al., Energies 12, 86 (2018).

[79] W. Li et al., IEEE Trans. Appl. Supercond. 25, 5700204 (2015).

[80] X. Tian et al., 22nd International Conference on Electrical Machines and Systems (ICEMS), (2019).

[81] O. Keysan and M. A. Mueller, IEEE Trans. Appl. Supercond. 21, 3523 (2011).

[82] Y. J. Hwang et al., IEEE Trans. Appl. Supercond. 23, 5200305 (2013).

[83] Y. Sato et al. 18th International Conference on Electrical Machines (2008).

[84] K. L. Kovalev et al., IEEE Trans. Appl. Supercond. 26, 5203204 (2016).

[85] Y. Zhang et al., IEEE Trans. Appl. Supercond. 30, 5203406 (2020).

[86] O. Keysan and M. Mueller, Supercond. Sci. Technol. 28, 034004 (2015).

Insert math as
Block
Inline
Additional settings
Formula color
Text color
#333333
Type math using LaTeX
Preview
\({}\)
Nothing to preview
Insert