Article
Influence of annealing on the critical current of 2G HTS tapes irradiated Fe ions
D.A. Abin
National research nuclear university «MEPHI».
e-mail: Dima_abin@mail.ru
I.A. Rudnev
National research nuclear university «MEPHI».
M.A. Osipov
National research nuclear university «MEPHI».
R.G. Batulin
Kazan Federal University
Abstract
Modern high-temperature superconducting (HTS) tapes are in demand for the manufacture of powerful electromagnets in tokamaks. Due to the design features of the HTS tapes, the material will be subject to irradiation by decay products of the thermonuclear reaction, and specifically will be influenced by neutrons with an energy of about 14 MeV, which leads to the accumulation of defects and degradation of critical characteristics. This article discusses annealing of a tape irradiated with ions (simulated irradiation) with an open HTS layer as a method of restoring characteristics due to partial recombination of accumulated defects. It has been shown that irradiation with Fe2+ ions leads to a decrease in the critical current by 2-3.5 times, and subsequent annealing at a temperature of 180-210°C allows the critical current to be increased by 30-40% in comparison to the irradiated sample.
Keywords: HTS; critical current; annealing, heat treatment, ion irradiation, magnetization loops.
References
[1] A. Sykes, et.al., IEEE Trans. Plasma Sci., 42, 482 (2014).
[2] A. Costley, et al., Nucl. Fusion, 55, 033001 (2015).
[3] A. Sykes, et al., Nucl. Fusion, 58, 016039, 2018.
[4] F. Cui, et al., Nucl. Instrum. Methods Phys. Res. B, 91, 374 (1994).
[5] G. Cannelli, et al., State Commun., 77, 429 (1991).
[6] A. A. Abrikosov, Sov. Phys. JETP 5, 1174 (1957).
[7] J. S. Umezawa, et al., Phys. Rev. B, 36, 7151 (1987).
[8] B. M. Vlcek, et al., Phys. Rev. B 40, 67 (1993).
[9] J. Giapintzakis, et al., Phys. Rev. B 45, 10677 (1992).
[10] M. K. Hasan, et al. Supercond. Sci. Technol., 12, 606 (1999).
[11] L. Civale, et al., Phys. Rev. Lett. 67, 648 (1991).
[12] K. J. Leonard, et al., Nucl. Mater. Energy 9, 251 (2016).
[13] D.X. Fischer, et al., Supercond. Sci. Technol. 31, 4, 044006 (2018).
[14] J. Emhofer, et al., Supercond. Sci. Technol. 26, 3, 035009 (2013).
[15] I.A. Rudnev, et al., Phys. Lett. A 372, 21, 3934 (2008).
[16] J. Trastoy, et al., Physica C 506, 15, 195 (2014).
[17] A. I. Podlivaev, I. A Rudnev, FTT, 63, 6, 712 (2021).
[18] M. Jirsa, et al., Supercond. Sci. Technol., 30, 4, 045010 (2017).
[19] R. Prokopec, et al., Supercond. Sci. Technol. 28, 1, 014005 (2014).
[20] W. Iliffe, et al., Supercond. Sci. Technol., 34, 09LT01 (2021).
[21] J. Pedarnig, et al., Phys. Proc. 36, 508 (2012).
[22] D. Huang, et al., Supercond. Sci. Technol. 34, 045001 (2021).
[23] B. Roas, et al., Appl. Phys. Lett. 54, 1051 (1989).
[24] R. Kumar, et al., Solid State Commun. 106, 805 (1998).
[25] H. Watanabe, et al., Physica C 179, 75 (1991).
[26] J. Hua, et al., Phys. Rev. B 82, 024505 (2010).
[27] J. L. MacManus-Driscoll, et al., Nat. Mater. 3, 439 (2004).
[28] Y. Zhang, et al., Sci. Rep. 10, 14848 (2020).
[29] I. A. Rudnev et al., IEEE Trans. Appl. Supercond. 32, 4 (2022).
[30] P. A. Fedin, Physics of Atomic Nuclei. 85, 50 (2022).
[31] I. A. Rudnev et al., FTT, 65, 386 (2023).