Menu Close

Issue 1, 2023, pp. 6-21

Review

Russia is ready for commercial production of superconducting windings

E.Yu. Klimenko

Moscow Aviation Institute (National Research University), 125993   Moscow, Russia

DOI: https://doi.org/10.62539/2949-5644-2023-0-1-6-21

Abstract

Until recently there were naive hopes for significant increasing of superconducting (SC) devices operating temperature. Now applied SC community is disappointed in this point. Liquid helium is rehabilitated as the best refrigerant. Russia is becoming one of the major suppliers of helium to the world market. The technology of the best material for commercial applications (i.e. niobium-titanium wire) has not yet been lost. Russia is free from the world’s widespread prejudices regarding the possibility of commercial use of superconducting windings. Russian specialists have sufficient experience in manufacturing and operation of low-temperature superconducting devices. So there are all prerequisites for the development of a comprehensive program, including the resumption of production of low-temperature superconducting wires, the organization of mass production of superconducting electrical machines, inductive energy storage devices, separators for   rare-earth ores enrichment, etc. There must be created infrastructure for these devices operating.

Keywords: superconducting windings, liquid helium, niobium-titanium wires, HTSC windings.

References

[1] A. Godeke, Supercond. Sci. Technol. 36, 113001 (2023).

[2] GAZPROM. Pererabotka. Blagoveshchensk // blagoveshchensk-pererabotka.gazprom.ru, 2021. URL: https://blagoveshchensk-pererabotka.gazprom.ru/press/news/2021/09/294/

[3] Otgruzka szhizhennogo geliya s Amurskogo GPZ // energybase.ru, 2023. URL: https://energybase.ru/news/companies/otgruzka-szizennogo-gelia-s-amurskogo-gpz-2023-09-12

[4] A.E.Kontorovich et al. Sajt «NII KM» // www.niikm.ru, 2007. URL: http://www.niikm.ru/articles/publications/helium_in_the_world/

[5] E. Yu. Klimenko et al., IEEE Trans. Appl. 12, 1557 (2002).

[6] P. A. Cheremnykh, et al., IEEE Transactions on Magnetics 24, 882 (1988).

[7] E. Yu. Klimenko, et al., Cryogenics 30, 41 (1990).

[8] E. Yu. Klimenko, et al., IEEE Trans. on Magnetics 28, 470 (1992).

[9] I.O. Anashkin et al., Atomnaya energiya, 57, 401 (1984).

[7] Spravochnik «Aviacionnye materialy» 10, М.: VIAM, 2019.

[8] E.Yu. Klimenko, Pis’ma v ZHTF, 48, 17 (2022).

[9] N.A. Chernoplekov, et al., Superconducting Magnet Systems for Plasma Physics Research in the USSR // MT-6 Proceedings. Bratislava, 1977 / Bratislava: ALPHA, 1977, page 3.

[10] E.Yu. Klimenko i dr., DAN SSSR 261, 1350 (1981).

[11] Grilli F., et al., 32nd International Symposium on Superconductivity (ISS2019), 2020 / Journal of Physics: Conference Series 1590 (2020) 012051°IOP.

[12] S. Hahn, et al,  IEEE Trans. Appl. Supercond. 21, 1592 (2011).

[13] E.Yu. Klimenko, et al., IEEE Trans. on Magnetics 28, 843 (1992).

[14] Yu. P. Chudnyj, Ekspertnyj soyuz // http://unionexpert.su, 2014. URL: http://unionexpert.su/elektromagnitnaya-katapulta-vozmozhnosti (2014).

[15] E.Yu. Klimenko, et al., IEEE Trans. on Magnetics 28, 470 (1992).

[16] E.Yu. Klimenko, E.P. Polulyah, Toroidal’naya obmotka s odnorodnym modulem magnitnogo. Pat. 2370923 RF (2006).

[17] N.P. Gerasimov, E.Yu. Klimenko, S.I. Novikov, N.S. Chalenko, Ustrojstvo dlya graduirovki dinamometrov. AS 1091045 SSSR (1982).

[18] Klimenko E.Yu. et al. Force Generator // Proc. the First Japan-CIS joint seminar on electromagneto-mechanics in structures (JSAEM), Tokio: 1992, page 71.

[19] Yu.V Tarbeev i dr., Izmeritel’naya tekhnika, 10, 26 (1984).

[20] Yu.D. Kuroedov, Obzor GKAZ SSSR, 49 (1982).