Menu Close

Issue 2, 2024, pp. 66-78

Review

Current stage in the study of superconducting and electron subsystem of the 1144 family stoichiometric ferropnictides

T. E. Kuzmicheva

 Lebedev Physical Institute of the Russian Academy of Sciences, Leninsky ave. 53, 119991 Moscow, Russia

e-mail: kuzmichevate@lebedev.ru

 S. A. Kuzmichev

 Lebedev Physical Institute of the Russian Academy of Sciences, Leninsky ave. 53, 119991 Moscow, Russia

Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia

 A. Yu. Degtyarenko

 Lebedev Physical Institute of the Russian Academy of Sciences, Leninsky ave. 53, 119991 Moscow, Russia

DOI: https://doi.org/10.62539/2949-5644-2024-0-2-66-78

Abstract

Due to multiple-band structure, an interplay between superconducting and magnetic subsystems, the members of the 1144 iron-pnictide family show a number of unique properties not typical to other ferropnictide families. Nonetheless, a quick degradation in open air causes a lack of experimental probes of such extraordinary compounds. In the review, we briefly consider the crystal structure, doping and pressure phase diagram, band-structure features, as well as summarize the available experimental data on the gap structure of the 1144 family pnictides. We compare the properties of the 1144 materials with those of a sister 122 family compounds.

Keywords: high-temperature superconductors; pnictides; band structure; superconducting order parameter; phase diagram.

References

[1] A. Iyo, et al., J. Am. Chem. Soc. 138, 3410 (2016). DOI: 10.1021/jacs.5b12571
[2] K. Kawashima, et al., J. Phys.: Conf. Series 969, 012027 (2018). DOI: 10.1088/1742-6596/969/1/012027
[3] W. Meier, et al., Phys. Rev. B 94, 064501 (2016). DOI: 10.1103/PhysRevB.94.064501
[4] M. P. Smylie, et al., Phys. Rev. B 98, 104503 (2018). DOI: 10.1103/PhysRevB.98.104503
[5] S.J. Singh, et al., Phys. Rev. Mat. 2, 074802 (2018). DOI:1 0.1103/PhysRevMaterials.2.074802
[6] B.Q. Song, et al., Phys. Rev. B 97, 094105 (2018). DOI: 10.1103/PhysRevB.97.094105
[7] S.A. Kuzmichev, et al., JETP Lett. 116, 723 (2022). DOI: 10.1134/S0021364022602329
[8] A.Yu. Degtyarenko, et al., JETP Lett. 118, 855 (2023). DOI: 10.1134/S002136402360338X
[9] S. Ishida, et al., npj Quantum Materials 4, 27 (2019). DOI:10.1038/s41535-019-0165-0
[10] A.Yu. Degtyarenko, et al., Nanomaterials 12, 3801 (2022). DOI:10.3390/nano12213801
[11] V. Vlasenko, et al., Supercond. Sci. Technol. 33, 084009 (2020). DOI:10.1088/1361-6668/ab9aa5
[12] W.L. Zhang, et al., Phys. Rev. B 98, 140501(R) (2018). DOI: 10.1103/PhysRevB.98.140501
[13] W.R. Meier, et al., npj Quantum Materials 3, 5 (2018). DOI: 10.1038/s41535-017-0076-x
[14] L. Xiang, et al., Phys. Rev. B 97, 174517 (2018). DOI: 10.1103/PhysRevB.97.174517; ibid. 99, 144509 (2019). DOI: 0.1103/PhysRevB.99.144509
[15] K. Iida, et al., Phys. Rev. B 100, 014506 (2019). DOI: 10.1103/PhysRevB.100.014506
[16] V.S. Stolyarov, et al., Phys. Rev. B 98, 140506(R) (2018). DOI: 10.1103/PhysRevB.98.140506
[17] S. Holenstein, et al., arXiv:1911.04325 (2019).
[18] D.E. Jackson, et al., Phys. Rev. B 98, 014518 (2018). DOI: 10.1103/PhysRevB.98.014518
[19] V.S. Stolyarov, et al., J. Phys. Chem. Lett. 11, 9393 (2020). DOI: 10.1021/acs.jpclett.0c02711
[20] F. Lochner, et al., Phys. Rev. B 96, 094521 (2017). DOI: 10.1103/PhysRevB.96.094521
[21] C. Xu, et al., Comm. Phys. 2, 16 (2019). DOI: 10.1038/s42005-019-0112-1
[22] D. X. Mou, et al., Phys. Rev. Lett. 117, 277001 (2016). DOI: 10.1103/PhysRevLett.117.277001
[23] T.K. Kim, et al., Phys. Rev. B 103, 174517 (2021). DOI: 10.1103/PhysRevB.103.174517
[24] Y. Liu, et al., Phys. Rev. B 93, 214503 (2016). DOI: 10.1103/PhysRevB.93.214503
[25] L. Boeri, et al., Phys. Rev. Lett. 101, 026403 (2008). DOI: 10.1103/PhysRevLett.101.026403
[26] R.H. Liu, et al., Nature 459, 64 (2009). DOI: 10.1038/nature07981
[27] I. I. Mazin, et al., Phys. Rev. Lett. 101, 057003 (2008). DOI: 10.1103/PhysRevLett.101.057003
[28] S. Maiti Set al., Phys. Rev. B 84, 224505 (2011). DOI: 10.1103/PhysRevB.84.224505
[29] M.M. Korshunov, Phys.-Uspekhi 57, 813 (2014). DOI: 10.3367/ufne.0184.201408h.0882
[30] M.M. Korshunov, Itinerant spin fluctuations in iron-based superconductors, in Perturbation
Theory: Advances in Research and Applications, ed. by Z. Pirogov, Nova Science Publishers Inc.,
N.Y. (2018), p. 61u2013138.
[31] Y. Wang, et al., Phys. Rev. B 88, 174516 (2013). DOI: 10.1103/PhysRevB.88.174516
[32] P. Hirschfeld, C. R. Physique 17, 197 (2016). DOI: 10.1016/j.crhy.2015.10.002
[33] M.M. Korshunov, et al., J. Magn. Magnetic Mater. 440, 133 (2017). DOI: 10.1016/j.jmmm.2016.12.082
[34] D.S. Inosov, C.R. Physique 17, 60 (2016). DOI: 10.1016/j.crhy.2015.03.001
[35] T. Agatsuma and H. Yamase, Phys. Rev. B 94, 214505 (2016). DOI: 10.1103/PhysRevB.94.214505
[36] H. Kontani and S. Onari, Phys. Rev. Lett. 104, 157001 (2010). DOI: 10.1103/PhysRevLett.104.157001
[37] T. Saito, et al., Phys. Rev. B 88, 045115 (2013). DOI: 10.1103/PhysRevB.88.045115
[38] T. Saito, et al., Phys. Rev. B 92, 134522 (2015). DOI: 10.1103/PhysRevB.92.134522
[39] A.E. Karakozov, et al., Phys. Rev. B 99, 054504 (2019). DOI: 10.1103/PhysRevB.99.054504
[40] A. Bianconi, Nature Phys. 9, 536 (2013). DOI: 10.1038/nphys2738
[41] S.Z. Zhao, et al., Phys. Rev. B 102, 144519 (2020). DOI: 10.1103/PhysRevB.102.144519
[42] A.J. Leggett, Prog. Theor. Phys. 36, 901 (1966). DOI: 10.1143/PTP.36.901
[43] Ya.G. Ponomarev, et al., Solid State Comm. 129, 85 (2004). DOI: 10.1016/j.ssc.2003.09.024
[44] Ya.G. Ponomarev, et al., JETP Lett. 85, 46 (2007). DOI: 10.1134/S0021364007010092
[45] S.A. Kuz’michev, T.E. Kuz’micheva, Sverhpr.: fund. i prikl. issl. 1, 70 (2023).
[46] L. Cao, et al., Nano. Res. 14, 3921 (2021). DOI:10.1007/s12274-021-3316-0
[47] W. Liu, et al., Nature Comm. 11, 5688 (2020). DOI: 10.1038/s41467-020-19487-1
[48] A. Fente, et al., Phys. Rev. B 97, 134501 (2018). DOI: 10.1103/PhysRevB.97.134501
[49] H.-H. Sun, J.-F. Jia, npj Quantum Mater. 2, 34 (2017). DOI:10.1038/s41535-017-0037-4
[50] R. Yang, et al., Phys. Rev. B 95, 064506 (2017). DOI: 10.1103/PhysRevB.95.064506
[51] P.K. Biswas, et al., Phys. Rev. B 95, 140505(R) (2017). DOI: 10.1103/PhysRevB.95.140505
[52] K. Cho, et al., Phys. Rev. B 95, 100502(R) (2017). DOI: 10.1103/PhysRevB.95.100502
[53] V.G. Kogan, et al., Phys. Rev. B 80, 014507 (2009). DOI: 10.1103/PhysRevB.80.014507
[54] R. Khasanov, et al., Phys. Rev. B 97, 140503(R) (2018). DOI: 10.1103/PhysRevB.97.140503
[55] T.E. Kuzmicheva, S.A. Kuzmichev, A.S. Medvedev, JETP Lett. 119, 780 (2024). DOI: 10.1134/S0021364024601313
[56] M. Hemmida, et al., Phys. Rev. B 103, 195112 (2021). DOI: 10.1103/PhysRevB.103.195112
[57] T. Kuzmicheva, et al., J. Supercond. Novel Magn. 37, 379 (2024). DOI: 10.1007/s10948-023-
06681-7