Menu Close

Issue 4, 2024, pp. 58-77

Article

Non-stationary structural changes in HTS composites under the influence of high intensity femtosecond laser pulses

I. V. Martirosian

National research nuclear university, Kashirskoye Highway, 31, 115409, Moscow, Russia

e-mail: mephizic@gmail.com

S. V. Pokrovskii

National research nuclear university, Kashirskoye Highway, 31, 115409, Moscow, Russia

A. N. Egorov

National research nuclear university, Kashirskoye Highway, 31, 115409, Moscow, Russia

O. B. Mavritskii

National research nuclear university, Kashirskoye Highway, 31, 115409, Moscow, Russia

DOI: https://doi.org/10.62539/2949-5644-2024-0-4-58-77

Abstract

The paper presents the results of experimental study and numerical analysis of defect formation processes in superconducting YBa2Cu3O7-x films on Hastelloy substrate under the influence of ultrashort laser radiation. The aim of the work is to develop a technique for numerical analysis and calibration of modes of exposure to high intensity femtosecond laser pulses to create systems of controlled defects in HTS composites. The processes of defect formation under the influence from 1 (single mode) to 20 (multiple mode) laser pulses on one point with a frequency of 10 Hz and duration of 2 ps were considered. The laser beam focusing radii were 1.5 and 3 μm. The dependences of the defect diameter and depth on the laser radiation energy in a wide range have been studied and the peculiarities of defect formation in the multiple mode have been shown. The physical processes occurring under the influence of laser radiation in different focusing modes are demonstrated. The proposed technique in the future can be extended for application in experiments of electron-probe spectroscopy, which will make it possible to study changes in the state of the electron-phonon subsystem of superconductors up to phase transitions associated with melting of the crystal lattice.

Keywords: High-temperature superconductors; REBCO; ultrashort laser pulses; laser ablation.

References

[1] J.P.F. Feighan, A. Kursumovic, J.L. MacManus-Driscoll, Superconductor Science and Technology 30, 123001 (2017). DOI: 10.1088/1361-6668/aa90d1
[2] P. Pahlke, M. Sieger, R. Ottolinger, M. Lao, M. Eisterer, A. Meledin, G. Van Tendeloo, J. Hänisch, B. Holzapfel, L. Schultz, K. Nielsch, R. Hühne, Superconductor Science and Technology 31, 044007 (2018). DOI: DOI 10.1088/1361-6668/aaafbe
[3] S.J. Lee, M. Park, I.K. Yu, Y. Won, Y. Kwak, C. Lee, IEEE Transactions on Applied Superconductivity 28, 1 (2018). DOI: 10.1109/TASC.2018.2820721
[4] B.P. Mikhailov, N.F. Tazetdinova, G.M. Leitus, E.A. Tishchenko, P.E. Kazin, V.V. Lennikov, Journal of Low Temperature Physics 105, 1553 (1996). DOI: 10.1007/BF00753921
[5] J. Einfeld, P. Lahl, R. Kutzner, R. Wördenweber, G. Kästner, Physica C: Superconductivity 351, 103 (2001). DOI: 10.1016/S0921-4534(00)01565-3
[6] R. Wördenweber, P. Lahl, J. Einfeld, IEEE Transactions 11, 2812 (2001). DOI: 10.1109/77.919648
[7] A. Palau, V. Rouco, J. González, C. Monton, T. Puig, X. Obradors, R. Córdoba, J. De Teresa, Vortex dynamics in YBCO films with engineered antidots and ferromagnetic Nanostructures // ui.adsabs.harvard.edu, 2013. URL: https://ui.adsabs.harvard.edu/abs/2013APS..MARC35008P/abstract
[8] A. Crisan, A. Pross, D. Cole, S. Bending, R. Wördenweber, P. Lahl, E. Brandt, Phys. Rev. B 71, 144504 (2005). DOI: 10.1103/PhysRevB.71.144504
[9] A. Armenio, L. Piperno, T. Petrisor, A. Vannozzi, V. Pinto, F. Rizzo, A. Augieri, A. Mancini, A. Rufoloni, R.B. Mos, L. CionteaT. PetrisorG. Sotgiu, G. Celentano, Superconductor Science and Technology 33, 094003 (2020). DOI: 10.1088/1361-6668/ab9f65
[10] L. Piperno, A. Armenio, A. Vannozzi, V. Pinto, F. Rizzo, V. Galluzzi, A. Augieri, A. Mancini, A. Rufoloni, G. Celentano, R.B. Mos, L. Ciontea, M. Nasui, M. Gabor, T. Petrisor, G. Sotgiu, IEEE Transactions on Applied Superconductivity 28, 6601405 (2018). DOI: 10.1109/TASC.2018.2804092
[11] W. Bian, Y. Chen, X. Yin, X. Tang, Y. Feng, K. Zhang, H. Wu, L. Li, F. Hong, G. Zhao, C. You, Journal of the European Ceramic Society 36, 3417 (2016). DOI: 10.1016/j.jeurceramsoc.2016.05.031
[12] D. Gillingham, M. Tselepi, A. Ionescu, S. Steinmuller, H. Beere, D. Ritchie, J. Bland, Physical Review B 76, 214412 (2007). DOI: 10.1103/PhysRevB.76.214412
[13] L. Antonova, T. Demikhov, A. Troitskii, A. Didyk, A. Kobzev, A. Yurasov, S. Samoilenkov, G. Mikhailova, Physica Status solidi (c) 12 (2014).
[14] M. Velter-Stefanescu, A. Totovana, V. Sandu, Microwave Spectroscopy in YBCO Superconductors: Influence of Neutron Irradiation on the 123 Phase, Journal of Superconductivity 11 (1998) 327-330.
[15] N. Hamid, Y. Abdullah, M. Abdullah, AIP Conference Proceedings 1584, 145 (2014). DOI: 10.1063/1.4866121
[16] M. Pannetier-Lecoeur, R. Wijngaarden, I. Fløan, J.H. Rector, R. Griessen, P. Lahl, R. Wördenweber, Physical Review B 67 (2003).
[17] I. Swiecicki, C. Ulysse, T. Wolf, R. Bernard, N. Bergeal, J. Briatico, G. Faini, J. Lesueur, J.E. Villegas, Physical Review B 85, 224502 (2012). DOI: 10.1103/PhysRevB.85.224502
[18] K. Harada, O. Kamimura, H. Kasai, T. Matsuda, A. Tonomura, V.V. Moshchalkov, Science 274, 1167 (1996). DOI: 10.1126/science.274.5290.1167
[19] S.V. Pokrovskii, O.B. Mavritskii, A.N. Egorov, N.A. Mineev, A.A. Timofeev, I.A. Rudnev, Superconductor Science and Technology 32, 07508 (2019).
[20] N. Harada, H. Yamada, K. Sugai, I. Munechika, M. Tsuda, T. Hamajima, Physica C: Superconductivity 392-396, 1043 (2003). DOI: 10.1016/S0921-4534(03)01181-X
[21] S. Raedts, A. Silhanek, M. Van Bael, R. Jonckheere, V. Moshchalkov, Physica C: Superconductivity 404, 298 (2004). DOI: 10.1016/j.physc.2003.09.095
[22] A.N. Moroz, A.N. Maksimova, V.A. Kashurnikov, I.A. Rudnev, IEEE Transactions on Applied Superconductivity 28, 1 (2018). DOI: 10.1109/TASC.2018.2813372
[23] S. Pokrovskii, O. Mavritskii, A. Egorov, N. Mineev, A. Timofeev, I. Rudnev, Journal of Physics: Conference Series 941, 012078 (2017). DOI 10.1088/1742-6596/941/1/012078
[24] S. Lee, V. Petrykin, A. Molodyk, S.V. Samoilenkov, A.R. Kaul, A. Vavilov, V. Vysotsky, S.S. Fetisov, Superconductor Science and Technology 27, 044022 (2014). DOI 10.1088/0953-2048/27/4/044022
[25] M.A. Gjennestad, Modeling of Heat Transfer in Two-Phase Flow Using the Level-Set Method.: Norvegian Univercity of Science and Technology, 2013.
[26] H. Sánchez-Mora, S. Quezada-García, M.A. Polo-Labarrios, R.I. Cázares-Ramírez, A. TorresAldaco, Case Studies in Thermal Engineering 40, 102594 (2022). DOI: 10.1016/j.csite.2022.102594
[27] K.-H. Leitz, P. Singer, A. Plankensteiner, B. Tabernig, H. Kestler, L. Sigl, Thermo-Fluiddynamical Modelling of Laser Beam-Matter Interaction in Selective Laser Melting, 2016).
[28] M. Noe, N. Hayakawa, L. Martini, A. Polasek, C. Sumereder, Common Characteristics and Emerging Test Techniques for High Temperature Superconducting Power Equipment (2015).
[29] W. Pi, Z. Liu, G. Li, S. Ma, Y. Meng, Q. Shi, J. Dong, Y. Wang, Superconductor Science and Technology 33, 084005 (2020). DOI: 10.1088/1361-6668/ab9aa3
[30] K.W. Lay, G.M. Renlund, Journal of the American Ceramic Society 73, 1208 (1990).
[31] D. Bhattacharya, R.K. Singh, P.H. Holloway, Journal of Applied Physics 70, 5433 (1991). DOI: 10.1063/1.350201
[32] F. Taïr, L. Carreras, J. Camps, J. Farjas, P. Roura, A. Calleja, T. Puig, X. Obradors, Journal of Alloys and Compounds 692, 787 (2017). DOI: https://doi.org/10.1016/j.jallcom.2016.08.072
[33] Super Alloy HASTELLOY(r) C276 (UNS N10276) // www.azom.com, 2012. URL: https://www.azom.com/article.aspx?ArticleID=7804