Menu Close

Issue 3, 2024, pp. 65-76

Article

Solving mystery with the Meissner state in La3Ni2O7-δ

E. F. Talantsev

M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 18, S. Kovalevskoy St., Ekaterinburg, 620108, Russia

e-mail: evgeny.talantsev@imp.uran.ru

DOI: https://doi.org/10.62539/2949-5644-2024-0-3-65-76

Abstract

Recently, zero resistance state in highly compressed La3Ni2O7-δ has been observed. However, all attempts of many research groups to detect the Meissner state in the La3Ni2O7-δ have been failed. To explain this puzzle, an exotic superconducting state (for instance, filamentary superconductivity) in the La3Ni2O7-δ has been supposed. Here, I extracted temperature dependent self-field critical current, Ic(sf,T), dataset from current-voltage curves and performed the Ic(sf,T) analysis. As a result, I found that highly compressed La3Ni2O7-δ to exhibits d-wave superconductivity with the gap-to-transition temperature ratio 2Δ(0)/(kBTc) = 4.0 ± 0.3, a very large ground state London penetration depth, λ(0, P = 16.6 GPa) = 6.0 μm, and a very high Ginzburg-Landau parameter k(0, P = 16.6 GPa) = 1500. This implies that the ground state lower critical field Bc1(0, P = 16.6 GPa) = 34 μT is of the same order as the Earth’s magnetic field. Based on this, to detect the Meissner state in the La3Ni2O7-δ becomes a very challenging task. I can hypothesize that the magnetic flux trap effect recently proposed to eliminate the diamond anvil cell (DAC) background in experiments on magnetic properties of the superconducting hydrides can also apply in studies of magnetic properties in the La3Ni2O7-δ superconductor.

Keywords: High-pressure superconductivity; Nickelate superconductors; London penetration depth; Lower critical field.

References

[1] V. I. Anisimov, D. Bukhvalov and T. M. Rice, Phys. Rev. B 59, 7901 (1999). DOI: 10.1103/PhysRevB.59.7901
[2] D. Li, K. Lee, B. Y. Wang et al., Nature 572, 624 (2019). DOI: 10.1038/s41586-019-1496-5
[3] H. Sun, M. Huo, X. Hu et al., Nature 621, 493 (2023). DOI: 10.1038/s41586-023-06408-7
[4] Z. Zhang, M. Greenblatt and J. B. Goodenough, J. Solid State Chem. 108, 402 (1994). DOI: 10.1006/jssc.1994.1059
[5] S. Taniguchi, T. Nishikawa, Y. Yasui et al., J. Physical Soc. of Japan 64, 1644 (1995). DOI: 10.1143/jpsj.64.1644
[6] G. Wu, J. J. Neumeier and M. F. Hundley, Phys. Rev. B 63, 245120 (2001). DOI: 10.1103/PhysRevB.63.245120
[7] R. Gao, L. Jin, S. Huyan et al. Is La3Ni2O6.5 a Bulk Superconducting Nickelate? // pubs.acs.org, (2024). URL: https://pubs.acs.org/doi/full/10.1021/acsami.3c17376
[8] Y. Nomura and R. Arita, Reports on Progress in Physics 85, 052501 (2022). DOI: 10.1088/1361-6633/ac5a60
[9] T. Cui, S. Choi, T. Lin et al., Commun Mater 5, 32 (2024). DOI: 10.1038/s43246-024-00478-4
[10] Q. N. Meier, J. B. de Vaulx, F. Bernardini et al., Phys. Rev. B 109, 184505 (2024). DOI: 10.1103/PhysRevB.109.184505
[11] J. Zhan, Y. Gu, X. Wu and J. Hu. Cooperation between electron-phonon coupling and electronic interaction in bilayer nickelates La3Ni2O7 // arxiv.org (2024). URL: https://arxiv.org/abs/2404.03638
[12] M. Osada, B. Y. Wang, B. H. Goodge, Nano Lett. 20, 5735 (2020).
[13] G. A. Pan, D. Ferenc Segedin, H. LaBollita et al., Nat. Mater. 21, 160 (2022). DOI: 10.1038/s41563-021-01142-9
[14] X. Ren, J. Li, W. C. Chen et al., Commun Phys. 6, 341 (2023). DOI: 10.1038/s42005-023-01464-x
[15] R. Cervasio, L. Tomarchio, M. Verseils et al., Appl. Electron Mater. 5, 4770 (2023). DOI: 10.1021/acsaelm.3c00506?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
[16] L. E. Chow, K. Y. Yip, M. Pierre et al. Pauli-limit violation in lanthanide infinite-layer nickelate superconductors // arxiv.org (2022). URL: https://arxiv.org/abs/2204.12606
[17] B. Y. Wang, T. C. Wang, Y. T. Hsu et al., Sci. Adv. 9, (2023). DOI:10.1126/sciadv.adf6655
[18] S. Wu, Z. Yang, X. Ma et al. Ac3Ni2O7 and La2AeNi2O6F (Ae = Sr, Ba): Benchmark Materials for Bilayer Nickelate Superconductivity. // arxiv.org (2024). URL: https://arxiv.org/abs/2403.11713
[19] H. Schlu00f6mer, U. Schollwu00f6ck, F. Grusdt and A. Bohrdt, Phys. Rev. B 110, L041117 (2024). DOI: 10.1103/PhysRevB.110.L041117
[20] M. Kakoi, T. Kaneko, H. Sakakibara, M. Ochi and K. Kuroki, Phys. Rev. B 109, L201124 (2024). DOI: 10.1103/PhysRevB.109.L201124
[21] J. Oppliger, J. Ku00fcspert, A.C. Dippel et al. Discovery of Giant Unit-Cell Super-Structure in the Infinite-Layer Nickelate PrNiO2 // arxiv.org (2024). URL: https://arxiv.org/abs/2404.17795
[22] Y. Zhang, L. F. Lin, A. Moreo, T. A. Maier et al. Phys. Rev. B 108, 165141 (2023). DOI: 10.1103/PhysRevB.108.165141
[23] E. F. Talantsev, J. Appl Phys. 134, 113904 (2023). DOI:10.1063/5.0166329
[24] Y. Zhou, J. Guo, S. Cai et al. Investigations of key issues on the reproducibility of high-Tc superconductivity emerging from compressed La3Ni2O7 // arxiv.org (2024). URL: https://arxiv.org/abs/2311.12361
[25] Q. G. Yang, D. Wang and Q. H. Wang, Phys. Rev. B 108, L140505 (2023). DOI: 10.1103/PhysRevB.108.L140505
[26] Z. Luo, X. Hu, M. Wang et al., Phys. Rev. Lett. 131, 126001 (2023). DOI: 10.1103/PhysRevLett.131.126001
[27] J. Hou, P. T. Yang, Z. Y. Liu et al., Chinese Phys. Lett. 40, 117302 (2023). DOI: 10.1088/0256-307X/40/11/117302
[28] L. Wang, Y. Li, S. Xie et al. Structure Responsible for the Superconducting State in La3Ni2O7 at High-Pressure and Low-Temperature Conditions // pubs.acs.org (2024). URL: https://pubs.acs.org/doi/abs/10.1021/jacs.3c13094
[29] Z. Huo, P. Zhang, A. Yang et al. Modulation of the Octahedral Structure and Potential Superconductivity of La3Ni2O7 through Strain Engineering // arxiv.org (2024). URL: https://arxiv.org/abs/2404.11001
[30] Y. B. Liu, J. W. Mei, F. Ye et al., Phys. Rev. Lett. 131, 236002 (2023). DOI: 10.1103/PhysRevLett.131.236002
[31] D. A. Shilenko and I. V. Leonov, Phys. Rev. B 108, 125105 (2023). DOI: 10.1103/PhysRevB.108.125105
[32] Q. Qin and Y. Yang, Phys. Rev. B 108, L140504 (2023). DOI: 10.1103/PhysRevB.108.L140504
[33] Z. Dong, M. Huo, J. Li et al., Nature 630, 847 (2024). DOI: 10.1038/s41586-024-07482-1
[34] M. Wang, H.H. Wen, T. Wu et al., Chinese Phys. Lett. 41, 077402 (2024). DOI: 10.1088/0256-307X/41/7/077402
[35] Z. Luo, C.Q. Chen, M. Wang et al., Phys. Rev. B 110, 014503 (2024). DOI: 10.1103/PhysRevB.110.014503
[36] R. Prozorov, Supercond. Sci. Technol. 37, 115032 (2024). DOI: 10.1088/1361-6668/ad86f0
[37] J. L. Tallon. Flux-trapping experiments on ultra-high pressure hydrides as evidence of superconductivity // arxiv.org, 2024. URL: https://arxiv.org/abs/2409.12351
[38] F. Du, F. F. Balakirev, V. S. Minkov et al., Phys. Rev. Lett. 133, 036002 (2024). DOI: 10.1103/PhysRevLett.133.036002
[39] Y. Zhang, D. Su, Y. Huang, Z. Shan et al., Nat. Phys. 20, 1269 (2024). DOI:10.1038/s41567-024-02515-y
[40] E. F. Talantsev and J. L. Tallon, Nat. Commun. 6, 7820 (2015). DOI: 10.1038/ncomms8820
[41] E. Talantsev, W. P. Crump and J. L. Tallon, Ann. Phys. 529, 1 (2017). DOI: 10.1002/andp.201700197
[42] A. B. Pippard, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 248, 97 (1955).
[43] V. S. Minkov, V. Ksenofontov, S. L. Budu2019ko et al., Nat. Phys. 19, 1293 (2023). DOI: 10.1038/s41567-023-02089-1
[44] A. P. Drozdov, M. I. Eremets, I. A. Troyan et al., Nature 525, 73 (2015). DOI: 10.1038/nature14964
[45] A. P. Drozdov, P. P. Kong, V. S. Minkov et al., Nature 569, 528 (2019). DOI: 10.1038/s41586-019-1201-8
[46] M. Somayazulu, M. Ahart, A. K. Mishra et al., Phys. Rev. Lett. 122, 027001 (2019). DOI: 10.1103/PhysRevLett.122.027001
[47] P. Bhattacharyya, W. Chen, X. Huang et al., Nature 627, 73 (2024). DOI: 10.1038/s41586-024-07026-7
[48] Z. Y. Cao, S. Choi, L. C. Chen et al. Probing superconducting gap in CeH9 under pressure // arxiv.org (2024) URL: https://arxiv.org/abs/2401.12682
[49] N. P. Salke, M. M. Davari Esfahani, Y. Zhang et al., Nat Commun 10, 4453 (2019). DOI: 10.1038/s41467-019-12326-y
[50] D. Semenok, J. Guo, D. Zhou et al. Evidence for Pseudogap Phase in Cerium Superhydrides: CeH10 and CeH9 // arxiv.org (2023). URL: https://arxiv.org/abs/2307.11742
[51] M. I. Eremets, Natl. Sci. Rev. 11, nwae047 (2024). DOI:10.1093/nsr/nwae047
[52] M. I. Eremets, V. S. Minkov, A. P. Drozdov et al., Nat. Mater. 23, 26 (2024). DOI: 10.1038/s41563-023-01769-w
[53] I.A. Troyan, D.V. Semenok, A.V. Sadakov i dr. Zhurna teoreticheskoj i eksperimental’noj fiziki 166, 74 (2024). DOI: 10.31857/S0044451024070083
[54] E. F. Talantsev. On the fundamental definition of critical current in superconductors // arxiv.org, 2017. URL: https://arxiv.org/abs/1707.07395
[55] E. F. Talantsev, N. M. Strickland, S. C. Wimbush et al., AIP Adv. 7, 125230 (2017) . DOI:10.1063/1.4997261
[56] S. C. Wimbush and N. M. Strickland, IEEE Transactions on Applied Superconductivity 27, 1 (2017). DOI: 10.1109/TASC.2016.2628700
[57] N. M. Strickland, A. Choquette, E. F. Talantsev et al. High-current superconductor transport critical-current measurement option for the Quantum Design Physical Property Measurement System // arxiv.org, 2019. URL: https://arxiv.org/abs/1908.09416
[58] E. F. Talantsev and R. C. Mataira, AIP Adv. 8, 075213 (2018). DOI:10.1063/1.5038040
[59] E. F. Talantsev, R. C. Mataira and W. P. Crump, Sci. Rep. 10, 212 (2020). DOI: 10.1038/s41598-019-57055-w
[60] E. Helfand and N. R. Werthamer, Physical Review 147, 288 (1966). DOI: 10.1103/PhysRev.147.288
[61] N. R. Werthamer, E. Helfand and P. C. Hohenberg, Physical Review 147, 295 (1966). DOI: 10.1103/PhysRev.147.295
[62] T. Baumgartner, M. Eisterer, H. W. Weber et al., Supercond. Sci. Technol. 27, 015005 (2014). DOI: 10.1088/0953-2048/27/1/015005
[63] R. Prozorov and V. G. Kogan, Practically universal representation of the Helfand-Werthamer upper critical field for any transport scattering rate // arxiv.org (2024). URL: https://arxiv.org/abs/2407.15000
[64] E. F. Talantsev, W. P. Crump and J. L. Tallon, Sci. Rep. 7, 10010 (2017). DOI: 10.1038/s41598-017-10226-z
[65] E. F. Talantsev, W. P. Crump, J. O. Island et al., 2d Mater. 4, 025072 (2017). DOI:10.1088/2053-1583/aa6917
[66] E. F. Talantsev and W. P. Crump, Supercond. Sci. Technol. 31, 124001 (2018). DOI:10.1088/1361-6668/aae50a
[67] E. F. Talantsev, K. Iida, T. Ohmura et al., Sci. Rep. 9, 14245 (2019). DOI: 10.1038/s41598-019-50687-y
[68] J. Hu00e4nisch, Y. Huang, D. Li et al., Supercond. Sci. Technol. 33, 114009 (2020). DOI: 10.1088/1361-6668/abb118
[69] E. F. Talantsev, Supercond. Sci. Technol. 32, 084007 (2019). DOI:10.1088/1361-6668/ab1a16
[70] D. V. Semenok, I. A. Troyan, A. V. Sadakov et al., Advanced Materials 34, 2204038 (2022). DOI: 10.1002/adma.202204038
[71] I. A. Troyan, D. V. Semenok, A. G. Ivanova et al., Advanced Science 10, 2303622 (2023). DOI:10.1002/advs.202303622
[72] W. Zhang, X. Liu, L. Wang et al., Nano Lett 23, 872 (2023). DOI: 10.1021/acs.nanolett.2c04103?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
[73] A. V. Sadakov, V. A. Vlasenko, I. A. Troyan et al., J. Phys. Chem. Lett. 14, 6666 (2023). DOI: 10.1021/acs.jpclett.3c01577
[74] S. Park, S. Y. Kim, H. K. Kim et al., Nat. Commun. 12, 3157 (2021). DOI: 10.1038/s41467-021-23310-w
[75] P. Paturi and H. Huhtinen, Supercond. Sci. Technol. 35, 065007 (2022).
[76] X. Liu, W. Zhang, K. T. Lai et al., Phys Rev B 105, 214524 (2022). DOI: 10.1103/PhysRevB.105.214524
[77] E. F. Talantsev, W. P. Crump, J. G. Storey aet al., Ann. Phys. 529, 1 (2017). DOI: 10.1002/andp.201700197
[78] A. Tuomola, E. Rivasto, M. M. Aye et al., Journal of Physics: Condensed Matter 35, 475001 (2023). DOI: 10.1088/1361-648X/acee3d
[79] A. Fu00eate, L. Rossi, A. Augieri et al., Appl. Phys. Lett. 109, 192601 (2016). DOI:10.1063/1.4967197
[80] P. Paturi, M. Malmivirta, T. Hynninen et al., Journal of Physics: Condensed Matter 30, 315902 (2018). DOI: 10.1088/1361-648X/aad02b
[81] S. G. Jung, S. Seo, S. Lee et al., Nat. Commun. 9, 434 (2018). DOI: 10.1038/s41467-018-02899-5
[82] B. Pal, B. P. Joshi, H. Chakraborti et al., Supercond. Sci. Technol. 32, 015009 (2019). DOI: 10.1088/1361-6668/aaed8f
[83] E. Rivasto, M. M. Aye, H. Huhtinen et al., Journal of Physics: Condensed Matter 36, 135702 (2024). DOI: 10.1088/1361-648X/ad162c
[84] A. V. Sadakov, A. A. Gippius, A. T. Daniyarkhodzhaev et al., JETP Lett. 119, 111 (2024). DOI:10.1134/S0021364023603676
[85] Y. H. Kim, S. Park, C. Il Kwon et al., Current Applied Physics 46, 27 (2023). DOI: 10.1016/j.cap.2022.12.001
[86] W. Wang, L. Wang, X. Liu et al., Advanced Science 46, 27 (2023). DOI:10.1002/advs.202410099
[87] F. Gross-Alltag, B. S. Chandrasekhar, D. Einzel et al., Zeitschrift for Physik B Condensed Matter 82, 243 (1991). DOI: 10.1007/BF01324334
[88] F. Gross, B. S. Chandrasekhar, D. Einzel et al., Zeitschrift for Physik B Condensed Matter. 64, 175 (1986). DOI: 10.1007/BF01303700
[89] C. P. Poole, H. Farach, R. Creswick et al., Superconductivity / 2nd ed. London: Academic Press, UK (2007).
[90] H. London, Proc. R Soc. Lond. A Math. Phys. Sci. 149, 71 (1935). DOI: 10.1098/rsbm.1971.0017
[91] R. F. Kiefl, M. D. Hossain, B. M. Wojek et al., Phys Rev B 81, 180502 (2010). DOI: 10.1103/PhysRevB.81.180502
[92] H. Schwenk, K. Andres, F. Wudl et al., Solid State Commun. 45, 767 (1983). DOI: 10.1016/0038-1098(83)90251-X
[93] E. F. Talantsev, Modern Physics Letters B 32, 1850114 (2018). DOI: 10.1142/S0217984918501142
[94] E. F. Talantsev, Superconductivity: Fundamental and Applied Research 2, 57 (2024). DOI: 10.62539/2949-5644-2024-0-2-57-65
[95] H. Schwenk, K. Andres and F. Wudl, Solid State Commun. 49, 723 (1984). DOI: 10.1016/0038-1098(84)90229-1
[96] J. J. Finley and B. S. Deaver, Solid State Commun. 36, 493 (1980). DOI: 10.1016/0038-1098(80)90373-7
[97] Y. Kashihara, A. Nishida and H. Yoshioka, J. Physical. Soc. Japan 46, 1112 (1979). DOI: 10.1143/JPSJ.46.1112
[98] C. Panagopoulos, J. R. Cooper and T. Xiang, Phys. Rev. B 57, 13422 (1998). DOI: 10.1103/PhysRevB.57.13422
[99] H. Schwenk, C. P. Heidmann, F. Gross et al., Phys. Rev. B 31, 3138 (1985). DOI: 10.1103/PhysRevB.31.3138
[100] H. Schwenk, S. S. P. Parkin, V. Y. Lee aet al., Phys Rev B 34, 3156 (1986). DOI: 10.1103/PhysRevB.34.3156
[101] V. A. Moskalenko, The Physics of Metals and Metallography 8, 503 (1959).
[102] H. Suhl, B. T. Matthias and L. R. Walker, Phys Rev Lett 3, 552 (1959). DOI: 10.1103/PhysRevLett.3.552
[103] R. Prozorov and V. G. Kogan, Reports on Progress in Physics 74, 124505 (2011). DOI: 10.1088/0034-4885/74/12/124505
[104] A. Carrington and F. Manzano, Physica C Supercond 385, 205 (2003). DOI: 10.1016/S0921-4534(02)02319-5
[105] F. Bouquet, Y. Wang, R. A. Fisher et al., Europhysics Letters (EPL) 56, 856 (2001). DOI: 10.1209/epl/i2001-00598-7
[106] E. F. Talantsev, W. P. Crump and J. L. Tallon, Supercond. Sci. Technol. 31, 015011 (2018). DOI:10.1088/1361-6668/aa9800
[107] E. F. Talantsev, Review of Scientific Instruments 93, 053912 (2022). DOI:10.1063/5.0081288
[108] Talantsev, Condens Matter. 4, 83 (2019). DOI: 10.3390/condmat4030083
[109] C. Patra, T. Agarwal, Arushi et al., Adv Quantum Technol. 2400175 (2024). DOI:10.1002/qute.202400175
[110] C. Patra, T. Agarwal, R. R. Chaudhari et al., Phys Rev B 106, 134515 (2022). DOI: 10.1103/PhysRevB.106.134515
[111] R. Gumeniuk, V. Levytskyi, B. Kundys and A. Leithe-Jasper, Phys Rev B 108, 214515 (2023). DOI: 10.1103/PhysRevB.108.214515
[112] L. P. Goru2019kov and V. Z. Kresin, Rev. Mod. Phys. 90, 011001 (2018). DOI: 10.1103/RevModPhys.90.011001
[113] E. F. Talantsev and V. V. Chistyakov, Letters of Materils 14, 262 (2024). DOI:10.48612/letters/2024-3-262-268
[114] A. Seshita, H. Okabe, R. Kasem et al. Investigation of superconducting gap of high-entropy telluride AgInSnPbBiTe5 // arxiv.org (2024). URL: https://arxiv.org/abs/2410.06548