Article
An opportunity of fault current limitation in power systems with superconducting transmission lines made of 2G HTS tapes
V. V. Zheltov
Joint Institute for High Temperature of the Russian Academy of Sciences, ul. Izhorska, 13-2, 125412, Moscow, Russia
N. N. Balashov
Joint Institute for High Temperature of the Russian Academy of Sciences, ul. Izhorska, 13-2, 125412, Moscow, Russia
e-mail: nnb551@yandex.ru
P. N. Degtyarenko
Joint Institute for High Temperature of the Russian Academy of Sciences, ul. Izhorska, 13-2, 125412, Moscow, Russia
S-Innovations LLC, Nauchny proezd, 20-2, 117246, Moscow, Russia
A. Y. Arkhangelsky
Joint Institute for High Temperature of the Russian Academy of Sciences, ul. Izhorska, 13-2, 125412, Moscow, Russia
A. Y. Degtyarenko
Joint Institute for High Temperature of the Russian Academy of Sciences, ul. Izhorska, 13-2, 125412, Moscow, Russia
P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Leninsky Prospekt, 53, 119991, Moscow, Russia
K. L. Kovalev
Joint Institute for High Temperature of the Russian Academy of Sciences, ul. Izhorska, 13-2, 125412, Moscow, Russia
Moscow Aviation Institute, National Research University, Volokolamskoye highway, 4, 125993, Moscow, Russia
Abstract
2G HTS conductors are known to have high critical parameters what gives an opportunity of making various fault current limiting devices. One of them is proposed in this paper the HTS fuse – HTSF), the design of which was developed and previously protected by a patent. Due to its simplicity, this device has a low cost as compared with others and can be replaced very easily after actuation and burning out. Another advantage of the HTSF is a low capacity of its cryogenic system, due to its low mass and dimension characteristics, but if it is used together with a HTS cable there is no necessity of having a special cryogenic system at all, since the HTSF cooling down can be performed by that one of the HTS cable. Here are given the calculations of the fault current limitation efficiency of the HTSF within the electric power system having a HTS transmission line.
Keywords: HTS tapes; HTS cables; HTS Fuse; fault current limitation; electric power network; critical current.
References
[1] V.V. Zheltov, S.I. Kopylov, A.Yu. Arhangel’skij, N.N. Balashov, D.V. Belkin, A.B. Shigidin, Vysokovol’tnyj predohranitel’ so sverhprovodyashchej vysokotemperaturnoj vstavkoj, Pat. RU206406 (2021).
[2] G. Zhang, H. Wang, Q. Qiu et al., Supercond. Sci. Technol. 34, 013001 (2020). DOI: 10.1088/1361-6668/abac1f
[3] H.W. Neumueller, W. Schmidt, H.P Kraemer et al., IEEE Trans. Appl. Supercond. 19, 1950 (2009). DOI: 10.1109/TASC.2009.2017902
[4] H.P. Kraemer, W. Schmidt, H. Cai et al., Phys. Procedia 36, 921 (2012). DOI: 10.1016/j.phpro.2012.06.230
[5] S.R. Lee, J.J. Lee, J. Yoon et al., IEEE Trans. Appl. Supercond. 27, 5401305 (2017). DOI: 10.1109/TASC.2017.2669159
[6] S.R. Lee, E.Y. Ko, J.J. Lee et al., IEEE Trans. Appl. Supercond. 29, 5602104 (2019). DOI: 10.1109/TASC.2019.2897838
[7] M. Moyzykh, D. Gorbunova, P. Ustyuzhanin et al., IEEE Trans. Appl. Supercond. 31, 5601707 (2021). DOI: 10.1109/TASC.2021.3066324
[8] Z. Hong, J. Sheng, J. Zhang et al., IEEE Trans. Appl. Supercond. 22, 5600504 (2011). DOI: 10.1109/TASC.2011.2180278
[9] Y. Chen, X. Liu, J. Sheng et al. IEEE Trans. Appl. Supercond. 24, 5601305 (2013). DOI: 10.1109/TASC.2013.2284936
[10] S. Dai, T. Ma, C. Xue et al., Phys. C Supercond. Its Appl. 565, 1253501 (2019). DOI: 10.1016/j.physc.2019.06.004
[11] M. Song, S. Dai, C. Shenget al., Phys. C Supercond. Its Appl. 585, 1353871 (2021). DOI: 10.1016/j.physc.2021.135387160
[12] V. Chepikov, N. Mineev, P. Degtyarenko et al., Supercond. Sci. and Tech. 30, 124001 (2017). DOI: 10.1088/1361-6668/aa9412
[13] A.V. Ovcharov, P.N. Degtyarenko, V.N. Chepikovet al., Sci. Rep. 9, 15235 (2019). DOI: 10.1038/s41598-019-51348-w
[14] P. Degtyarenko, S. Gavrilkin, A. Tsvetkov et al., Supercond. Sci. and Tech. 33, 045003 (2019). DOI: 10.1088/1361-6668/ab714c
[15] A. Molodyk, S. Samoilenkov, A. Markelov et al., Sci. Rep. 11, 1 (2021). DOI: 10.1038/s41598-021-81559-z
[16] D.F. Alferov, P.N. Degtyarenko, I.N. Dulu2019kin et al., J. Phys.: Conf. Ser. 234, 032001 (2010). DOI: 10.1088/1742-6596/234/3/032001
[17] P.N. Degtyarenko, I.N. Dulu2019kin, L.M. Fisher et al., Physics of low temperature 37, (2011).
[18] P.N. Degtyarenko, I.N. Dulu2019kin, L.M. Fisher et al., Physics Procedia 36, 596 (2012). DOI: 10.1016/j.phpro.2012.06.174
[19] P. N. Degtyarenko, V. V. Zheltov, N. N. Balashov et al., Materials 15, 8754 (2022). DOI: 10.3390/ma15248754
[20] D.F. Alferov, M.R. Akhmetgareev, A.I. Budkovsky et al., Elektrichestvo 9, 12 (2012).
[21] V.Z. Mansurov, N.V. Alexandrov, Proceedings of the Tomsk Technical University 323, (2013).
[22] S.I. Kopylov, N.N. Balashov, P.N. Degtyarenko et al., IEEE Trans. Appl. Supercond. 29, 5401405, (2019). DOI: 10.1109/TASC.2019.2898511
[23] D. W. Hazelton. 2G HTS Conductors at SuperPower // LTHFSWS2012 Napa, CA, November 6, 2012. u2013 p. 1.
[24] D.W. Hazelton, V. Selvamanickam, J.M. Duval et al., IEEE Trans. Appl. Supercond. 19, 2218 (2009). DOI: 10.1109/TASC.2009.2018791
[25] S. Samoilenkov et al., Supercond. Sci. and Tech. 29, 024001 (2016). DOI: 10.1088/0953-2048/29/2/024001
[26] J. Zhu. S.Chen and Z. Jin, Electronics 11, 297 (2022).DOI: 10.3390/electronics11