Review
The ITER superconducting magnet system. Manufacturing and assembly status as of 2024
A. A. Mednikov
Joint Stock Company (JSC) D.V. Efremov Institute of Electrophysical Apparatus ‘‘NIIEFA’’, doroga na Metallostroy, 3, 196641, Saint Petersburg, Russia
e-mail: mednikov@sintez.niiefa.spb.su
Yu. A. Ilyin
ITER Organization, Route de Vinon-sur-Verdon, CS 90 046 13067 St. Paul-lez-Durance, France
A. V. Krasilnikov
Institution “Project Center ITER”, 1 Akademika Kurchatova pl., 123182, Moscow, Russia
I. Yu. Rodin
ITER Organization, Route de Vinon-sur-Verdon, CS 90 046 13067 St. Paul-lez-Durance, France
Abstract
The electromagnetic system (EMS) is one of the most significant components of the International Thermonuclear Experimental Reactor (ITER). It establishes the machine’s ability to generate and control a fusion plasma with a current of up to 15 MA and a power of up to 500 MW within hundreds of seconds. ITER EMS is the largest superconductor magnet system that has ever been created with a stored energy of up to 50 GJ. It is a highly technological magnets using superconductors based on Nb3Sn and NbTi, which work at a temperature of 4-6 K with compulsory cooling by a flow of liquid and gaseous helium. The EMS coils are required to be operable at electrical voltages up to 20-30 kV, and mechanical stresses up to 500-600 MPa. The manufacturing of the coils and the associated superconducting current carrying system are now moving into the final stage of production. The most part of them has already been manufactured and delivered to the ITER toroidal magnetic coil chamber (Tokamak) installation site. This review briefly describes the design of ITER superconductor coils of all 4 types and gives the current status of their manufacturing and assembly.
Keywords: ITER; EMS; Tokamak; plasma; NbTi; Nb3Sn
References
[1] What is ITER? // www.iter.org. URL: https://www.iter.org/proj/inafewlines
[2] N. Mitchell, et al., Fus. Eng. Des. 123, 17 (2017). DOI: 10.1016/j.fusengdes.2017.02.085
[3] On-site coil manufacturing // www.iter.org. URL: https://www.iter.org/newsline/-/3715
[4] V. I. Bondarenko et al., IEEE Transactions on Applied Superconductivity 23, 4201605 (2013). DOI: 10.1109/TASC.2013.2248413
[5] A. S. Bursikov et al., IEEE Transactions on Applied Superconductivity 23, 4201504 (2013). DOI: 10.1109/TASC.2013.2249553
[6] D. B. Stepanov et al., IEEE Transactions on Applied Superconductivity 25, 1 (2015). DOI: 10.1109/TASC.2014.2371033
[7] Y. Ilyin et al., IEEE Trans. on Appl. Supercond. 34, 1 (2024). DOI: 10.1109/TASC.2024.3371386
[8] B. S. Lim et al., IEEE Trans. Appl. Supercond. 26, 1 (2016). DOI: 10.1109/TASC.2015.2512705
[9] P. Carvas, et al., IEEE Trans. Appl. Supercond. 34, 4203905 (2024). DOI: 10.1109/TASC.2024.3362758
[10] M. M. Lopez, et al., IEEE Trans. Appl. Supercond. 34, 4204505 (2024) DOI: 10.1109/TASC.2024.3366152
[11] H. Kim, et al., IEEE Trans. Appl. Supercond. 32, 1 (2022). DOI: 10.1109/TASC.2022.3174812
[12] A. B. Oliva, et al., IEEE Trans. Appl. Supercond. 32, 1 (2022). DOI: 10.1109/TASC.2022.3171191
[13] I. Pong et al., IEEE Trans. Appl. Supercond., 22, 4802606 (2012). DOI: 10.1109/
TASC.2012.2182972
[14] S.V. Shavkin, V.S. Kruglov, Sverhprovodimost’: fundamental’nye i prikladnye issledovaniya. 1, 1 (2024). DOI: 10.62539/2949-5644-2024-0-1-1-7
[15] A. V. Krasilnikov, Plasma Phys. Rep. 50, 397 (2024). DOI: 10.1134/S1063780X24600245
[16] P. Libeyre, et al., IEEE Trans. Appl. Supercond. 28, 1 (2017). DOI: 10.1109/TASC.2017.2775581
[17] F. Simon, et al., IEEE Trans. Appl. Supercond. 34, 4200405 (2024). DOI: 10.1109/TASC.2023.3346359
[18] N. Koizumi, et al., IEEE Trans. Appl. Supercond. 30, 4202106 (2020). DOI: 10.1109/TASC.2020.2971673
[19] Mondonico G. et al., Journal of Applied Physics. 108 (2010). DOI:10.1063/1.3499649
[20] Nijhuis A. et al., Superconductor Science and Technology 26, 084004 (2013). DOI 10.1088/0953-2048/26/8/084004
[21] Mitchell N., Breschi M., Tronza V., Superconductor Science and Technology 33, 054007 (2020). DOI 10.1088/1361-6668/ab7ec2
[22] A. B. Oliva, et al., IEEE Trans. Appl. Supercond. 30, 4203713 (2020). DOI: 10.1109/TASC.2020.2979397
[23] Du S. et al. Fusion Engineering and Design. 116, 10-16 (2017).