Menu Close

Issue 2(7), pp. 60-72, 2025

Article

Effect of O+ ion irradiation on the magnetic properties of superconducting magnesium diboride composites

S. V. Veselova

Institute of Physics, Kazan (Volga Region) Federal University, Kremlyovskaya, 16a, 420008, Kazan, Russian

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe Highway, 31, 115409, Moscow, Russian

P. А. Fedin

National Research Center “Kurchatov Institute”, Akademika Kurchatova square, 123182, Moscow, Russian

I. V. Yanilkin

Institute of Physics, Kazan (Volga Region) Federal University, Kremlyovskaya, 16a, 420008, Kazan, Russian

М. А. Cherosov

Institute of Physics, Kazan (Volga Region) Federal University, Kremlyovskaya, 16a, 420008, Kazan, Russian

А. I. Gumarov

Institute of Physics, Kazan (Volga Region) Federal University, Kremlyovskaya, 16a, 420008, Kazan, Russian

D. S. Uvin

Institute of Physics, Kazan (Volga Region) Federal University, Kremlyovskaya, 16a, 420008, Kazan, Russian

Т. V. Kulevoy

National Research Center “Kurchatov Institute”, Akademika Kurchatova square, 123182, Moscow, Russian

R. G. Batulin

Institute of Physics, Kazan (Volga Region) Federal University, Kremlyovskaya, 16a, 420008, Kazan, Russian

e-mail: tokamak@yandex.ru

DOI: https://doi.org/10.62539/2949-5644-2025-7-2-60-72

Abstract

The results of a study on the effect of ion irradiation (O+ ions, E = 20 keV) in radiation defect generation modes on the critical temperature and current of high-temperature superconducting magnesium diboride (MgB₂) composites are presented. An analysis was performed, including both the integral critical current derived from sample magnetization measurements and the determination of the critical temperature from vibrating sample magnetometry data. It is shown that at an ion fluence of 1·10¹³ ions/cm², a 3.5-fold increase in the critical current density (Jc) is observed in the radiation defect generation regime. In contrast, at a fluence of 1·10¹⁴ ions/cm², a slight decrease in Jc is observed, along with the absence of a Meissner phase in the superconductor bulk, as indicated by vibrating sample magnetometry.

Keywords: magnesium diboride; high-temperature superconductor; irradiation, radiation defects; critical current; magnetization.

References

[1] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Nature 410, 63 (2001). DOI: 10.1038/35065039
[2] S. Y. Xu, Q. Li, E. Wertz, Y. F. Hu, A. V. Pogrebnyakov, X. H. Zeng, X. X. Xi, J. M. Redwing, Physical Review B 68, 224501 (2003). DOI: 10.1103/PhysRevB.68.224501
[3] T. Iwanaka, T. Kusunoki, H. Kotaki, M. Kodama, H. Tanaka, A. Matsumoto, S. Horii, I. Kawayama, T. Doi, Japanese Journal of Applied Physics 60, 123004 (2021). DOI: 10.35848/1347-4065/ac38fa
[4] T. Kusunoki, H. Yamamoto, M. Kodama, H. Kotaki, H. Tanaka, G. Nishijima, S. Horii, T. Doi, IEEE Transactions on Applied Superconductivity 27, 1 (2016). DOI: 10.1109/TASC.2016.2642049
[5] I. V. Yanilkin, A. I. Gumarov, I. A. Rudnev, L. R. Fatikhova, A. G. Kiiamov, A. E. Denisov, S. A. Khokhorin, D. A. Tayurskii, R. G. Batulin, Superconductor Science and Technology 37, 085015 (2024). DOI: 10.1088/1361-6668/ad5c09
[6] T. Le, H. H. Pham, N. T. Nghia, N. H. Nam, T. Miyanaga, D. H. Tran, W.-N. Kang, Ceramics International 49, 2715 (2023). DOI: 10.1016/j.ceramint.2022.09.252
[7] D. T. Tran, T. Le, H. G. Lee, T. Park, N. T. Nghia, B. T. Hoa, D. H. Tran, W. N. Kang, J. Hwang, Current Applied Physics 66, 30 (2024). DOI: 10.1016/j.cap.2024.06.011
[8] D. T. Tran, T. Le, Y.-S. Seo, D. H. Tran, T. Park, S.-G. Jung, T. Miyanaga, C. Kim, S. Yeo, W. N. Kang, J. Hwang, Journal of Alloys and Compounds 968, 172144 (2023). DOI: 10.1016/j.jallcom.2023.172144
[9] A. Moroz, I. Rudnev, V. Kashurnikov, S. Khokhorin, R. Batulin , Journal of Superconductivity and Novel Magnetism. 36, 1335 (2023). DOI: 10.1007/s10948-023-06588-3
[10] D. Pham, S.-G. Jung, D. H. Tran, T. Park, W. N. Kang, Journal of Applied Physics 125, 023904 (2019). DOI: 10.1063/1.5061772
[11] S. G. Jung, S.-K. Son, D. Pham, W. C. Lim, J. Song, W. N. Kang, T. Park, Progress in Superconductivity and Cryogenics 21, 13 (2019). DOI: 10.9714/PSAC.2019.21.3.013
[12] S. G. Jung, D. Pham, J. M. Lee, Y. Han, W. N. Kang, T. Park, Current Applied Physics 22, 14 (2021). DOI: 10.1016/j.cap.2020.11.008
[13] L. Liu, J. M. Lee, Y. Han, J. Song, C. Kim, J. Suk, W. N. Kang, J. Liu, S. G. Jung, T. Park, Chinese Physics B 32, 127402 (2023). DOI: 10.1088/1674-1056/acf5d3
[14] D.N. Seleznev, A.B. Zarubin, N.N. Vinogradskij, K.E. Pryanishnikov, T.V. Kulevoj, Yadernaya fizika i inzhiniring 15, 372 (2024). DOI: 10.56304/S2079562923030302
[15] CKP KAMIKS. Oficial’nyj sajt // kamiks.itep.ru, 2025. URL: http://kamiks.itep.ru//
[16] R.G. Batulin, M.A. Cherosov, A.G. Kiiamov, I.A. Rudnev, S.A Khokhorin, D.S. Uvin, A.M. Rogov, D.A. Tayurskii, Cryogenics 137, 103776 (2024). DOI: 10.1016/j.cryogenics.2023.103776
[17] Handbook of Superconducting Materials / Ed. by D.A. Cardwell, D.S. Ginley. u2013 Boca Raton: IOP Publishing Ltd., 2003.
[18] A. Moroz, I. Rudnev, A. Stepanenko, A. Maksimova, V. Kashurnikov, Journal of Superconductivity and Novel Magnetism 37, 339 (2024). DOI: 10.1007/s10948-024-06693-x
[19] D.A. Abin, I.A. Rudnev, A.S. Starikovskii, S.V. Pokrovskii, S.V. Veselova, M.A. Osipov, R.G. Batulin, A.G. Kiiamov, P.A. Fedin, K.E.u00a0Pryanishnikov, T.V. Kulevoy, Physics of Atomic Nuclei 86, 1985 (2023). DOI: 10.1134/S1063778823090016
[20] I.A. Rudnev, A.I. Podlivaev, D.A. Abin, S.V. Pokrovskii, A.S. Starikovskii, R.G. Batulin, P.A. Fedin, K.E. Prianishnikov, T.V. Kulevoy, Physics of the Solid State 65, 379 (2023). DOI: 10.21883/PSS.2023.03.55577.540
[21] I. Rudnev, D. Abin, S. Pokrovskii, I. Anishchenko, A. Starikovskii, M. Osipov, T. Kulevoy, P. Fedin, K. Pryanishnikov, R. Batulin, A. Kiiamov, IEEE Transactions on Applied Superconductivity 32, 1 (2022). DOI: 10.1109/TASC.2022.3164629