Article
The effect of normal mechanical loads on the critical current distribution along the length of the HTS tapes
I. I. Preobrazhenskiy
NRC Kurchatov Institute, pl. akad. Kurchatova, d. 1, 123182, Moscow, Russia
Lomonosov Moscow State University, 119991 Moscow, Russia
e-mail: preo.ilya@yandex.ru
V. V. Guryev
NRC Kurchatov Institute, pl. akad. Kurchatova, d. 1, 123182, Moscow, Russia
D. N. Diev
NRC Kurchatov Institute, pl. akad. Kurchatova, d. 1, 123182, Moscow, Russia
A. V. Naumov
NRC Kurchatov Institute, pl. akad. Kurchatova, d. 1, 123182, Moscow, Russia
A. V. Polyakov
NRC Kurchatov Institute, pl. akad. Kurchatova, d. 1, 123182, Moscow, Russia
K. V. Moseev
NRC Kurchatov Institute, pl. akad. Kurchatova, d. 1, 123182, Moscow, Russia
M. N. Makarenko
NRC Kurchatov Institute, pl. akad. Kurchatova, d. 1, 123182, Moscow, Russia
S. V. Shavkin
NRC Kurchatov Institute, pl. akad. Kurchatova, d. 1, 123182, Moscow, Russia
Abstract
The distribution of the trapped magnetic field of untinned and tinned high-temperature superconductors (HTS) tapes after mechanical load on the stack of tapes was studied by the scanning Hall magnetometry method. Based on the obtained data, the values of the average critical current for all the studied samples were calculated. The degradation of the current carry capacity starts with lower mechanical loading on the stack in case of tinned tapes than of untinned ones. For tinned tapes the average value of the critical current drops by more than two times relative to initial state when a mechanical load of 400 MPa was applied; for untinned tapes – a decrease in the critical current is of less than 25%. The obtained data will be useful for further designs of current-carrying part based on stacks of HTS tapes for various applications.
Keywords: high-temperature superconductors; critical current; current characteristics; Hall magnetometry
References
[1] W. Dai, et al., ACS Appl. Mater. & Interf. 14, 49986 (2022). DOI: 10.1021/acsami.2c16293
[2] S. Takayama, et al., IEEE Trans. Appl. Supercond., 32, 1 (2022). DOI: 10.1109/TASC.2022.3160973
[3] M. Ohkubo, J. Appl. Phys., 134 (2023). DOI: 10.1063/5.0151581
[4] E. P. Kurbatova, Sverxprovodimost’: fundamental’ny’e i prikladny’e issledovaniya 1, 40 (2023). DOI: 10.62539/2949-5644-2023-0-1-40-55
[5] M. Diaz, et al., Supercond. Sci. and Techn. 35, 055007 (2022). DOI: 10.1088/1361-6668/ac4d70
[6] H. Miyazaki, et al., IEEE Trans. Appl. Supercond., 25(3), 1-5 (2015). DOI: 10.1109/TASC.2014.2380783
[7] T. Takematsu, et al., Physica C: Supercond. and its appl. 470, 674 (2010). DOI: 10.1016/j.physc.2010.06.009
[8] K. Katagiri, et al., IEEE Trans. Appl. Supercond. 14, 1046 (2004). DOI: 10.1109/TASC.2004.830390
[9] A. Gorospe, et al., Physica C 494, 163 (2013). DOI: 10.1016/j.physc.2013.04.062
[10] M. Charalambous, et al., Phys. Rev. B 58, 9510 (1998). DOI: 10.1103/PhysRevB.58.9510
[11] I.H. Senevirathne, et al. Rev. Sci. Instruments 93, (2022). DOI: 10.1063/5.0083309
[12] I.A. Rudnev, et al., Phys. Solid State 65, (2023). DOI: 10.21883/PSS.2023.03.55577.540
[13] S. Lee, et al., Superconductor Sci. and Techn. 27, 044022 (2014). DOI: 10.1088/0953-2048/27/4/044022
[14] S. Ochiai, et al., Materials Transactions 51, 1663 (2010). DOI: 10.2320/matertrans.MAW201501
[15] M. Fee, et al., IEEE Trans. Appl. Supercond. 1, 3337 (2001). DOI: 10.1109/77.919777
[16] F. Gömöry, et al., Supercond. Sci. Technol. 32,124001 (2019). DOI: 10.1088/1361-6668/ab4638
[17] Y. Wang, et al. Sci. China Techn. Sci. 53, 2239 (2010). DOI: 10.1007/s11431-010-4033-1