Article
Development of compact AC coaxial and triaxial cables based on second-generation high-temperature superconductors
V. V. Zubko
All-Russian scientific research and development cable institute («VNIIKP»), shosse Entuziastov, 5, 111024, Moscow, Russia
Moscow Aviation Institute (MAI), Volokolamskoe shosse, 4, 125993, Moscow, Russia
e-mail: vasily.zubko@gmail.com
S. S. Fetisov
All-Russian scientific research and development cable institute («VNIIKP»), shosse Entuziastov, 5, 111024, Moscow, Russia
S. Yu. Zanegin
All-Russian scientific research and development cable institute («VNIIKP»), shosse Entuziastov, 5, 111024, Moscow, Russia
Moscow Aviation Institute (MAI), Volokolamskoe shosse, 4, 125993, Moscow, Russia
A. A. Nosov
All-Russian scientific research and development cable institute («VNIIKP»), shosse Entuziastov, 5, 111024, Moscow, Russia
Moscow Aviation Institute (MAI), Volokolamskoe shosse, 4, 125993, Moscow, Russia
V. S. Vysotsky
All-Russian scientific research and development cable institute («VNIIKP»), shosse Entuziastov, 5, 111024, Moscow, Russia
DOI: https://doi.org/10.62539/2949-5644-2025-6-1-63-73
Abstract
In the article, using the example of two compact coaxial and triaxial AC power cables based on second-generation high temperature superconductors (2G HTS) the results of their development and manufacture which can be applied in the future, are summarized.. Methods for optimizing their design and approaches to manufacturing technologies for its implementation are presented. Models for calculating and methods for measuring losses in cables operating on alternating current are described. The results of their tests are given.
Keywords: HTS power cables; 2G HTS tapes; numerical analysis; AC losses.
References
[1] D. I. Doukas, IEEE Trans. on Appl. Supercond. 29, 5 (2019). DOI: 10.1109TASC.2019.2895395
[2] URL: http://www.superox.ru
[3] V.E. Sytnikov, P.I. Dolgosheev, G.G. Svalov, N.V. Polyakova, D.I. Belij, Physica C 310, 387 (1998).
[4] V.E. Sytnikov, G.G. Svalov, I.B. Peshkov, Cryogenics 29, 10 (1989). DOI: 10.1016/0011-2275(89)90242-7
[5] T. Hamajima, Cryogenics 40, 11 (2000).
[6] J. Zhu, X. Bao, L. Guo, Z. Xia, M. Qiu, W. Yuan, IEEE Trans. Appl. Supercond. 23, 5402505, (2013). DOI: 10.1109/TASC.2013.2244156
[7] F. Grilli, S. Stavrev, B. Dutoit, S. Spreafico, IEEE Trans. on Appl. Supercond. 14, 94 (2004). DOI: 10.1109/TASC.2004.824333
[8] M. Sjostrom, B. Dutoit, J. Duron, IEEE Trans. Appl. Supercond. 13, 1890 (2003). DOI: 10.1109/TASC.2003.812941
[9] S.S. Fetisov, V.V. Zubko, S.Yu. Zanegin, V.S, Vysotsky, IOP Conf. Series: Materials Science and Engineering 502, 012179 (2019). DOI: 10.1088/1757-899X/502/1/012179
[10] S.S. Fetisov, V.V. Zubko, Elektrichestvo 6, 12 (2021). DOI: 10.24160/0013-5380-2021-6-12-24
[11] V.S. Vysockij, S.Yu. Zanegin, V.V. Zubko, S.S. Fetisov, A.A. Nosov, Kabeli i provoda 3, 3 (2020).
[12] S.S. Fetisov, V.V. Zubko, S.Yu. Zanegin, A.A. Nosov, V.S. Vysotsky, IEEE Trans. Appl. Supercond. 31, 5400104 (2021). DOI: 0.1109/TASC.2021.3051401
[13] F. Grilli, E. Pardo, A. Stenvall, D.N. Nguyen, W. Yuan, F. Gömöry, IEEE Trans. on Appl. Supercond. 24, 8200433 (2014). DOI: 10.1109/TASC.2013.2259827
[14] B. Shen, F. Grilli, T. Coombs, Supercond. Sci. Technol. 33, 033002 (2020). DOI: 10.1088/1361-6668/ab66e8
[15] V.V. Zubko, S.Yu. Zanegin, S.S. Fetisov, J. Phys. Conf. Ser. 2043, 012004 (2021). DOI: 10.1088/1742 6596/2043/1/012004
[16] V.V. Zubko, S. S. Fetisov, V. S. Vysotsky, IEEE Trans. Appl. Supercond. 18, 8202005 (2016).
[17] V.V. Zubko, G.G. Svalov, S.S. Fetisov, Kabeli i provoda 3, 10 (2017).
[18] S.S. Fetisov, V.V. Zubko, S.Yu. Zanegin, A.A. Nosov, V.S. Vysotsky, IEEE Trans. Appl. Supercond. 28, 5400905, (2018). DOI: 10.1109/TASC.2018.2821708
[19] O.S. Kruger, et al. IEEE Trans. on Appl. Supercond. 9, 833, (1999).
[20] Ansys Multiphysics // URL: www.ansys.com
[21] S.S. Fetisov, A.A. Nosov, V.V. Zubko, N.V. Bykovsky, S.Yu. Zanegin, V.S. Vysotsky, G.G. Svalov, S. Lee, V. Petrykin, V. Kalitka, J. Phys., Conf. Ser. 507, 032063 (2014). DOI: 10.1088/1742-6596/507/3/032063
[22] S.S. Fetisov, et al, IEEE Trans. Appl. Supercond. 34, 3, 5900604, (2024).
[23] W. Norris, Journal of Physics D: Appl. Phys. 3, 489 (1970). DOI: 10.1088/0022-3727/3/4/308