Article
Clustering of Abrikosov vortices in intertype superconductors in the presence of pinning centers
V. P. Lenkov
National research nuclear university, Kashirskoye Highway, 31, 115409, Moscow, Russia
e-mail: valerii.lenkov25@gmail.com
A. N. Maksimova
National research nuclear university, Kashirskoye Highway, 31, 115409, Moscow, Russia
A. N. Moroz
National research nuclear university, Kashirskoye Highway, 31, 115409, Moscow, Russia
V. A. Kashurnikov
National research nuclear university, Kashirskoye Highway, 31, 115409, Moscow, Russia
Abstract
In this work, the processes of clusterization and melting of a vortex lattice with an intertype potential of intervortex interaction were studied. Numerical modeling was performed within the framework of the Lawrence-Doniak model using the Monte Carlo method. It was shown that the structure obtained in the intertype superconductor is more stable to field and temperature changes than the vortex structure of a type II superconductor. The process of melting of the cluster lattice is shown, including in the presence of pinning centers. Differences in the processes of melting of the vortex lattice of a defective and defect-free superconductor are shown.
Keywords: intertype superconductivity; clustering; melting of the vortex lattice.
References
[1] W. Y. Cordoba-Camacho, R. M. da Silva, A. Vagov, A. A. Shanenko, J. A. Aguiar, Phys. Rev. B 94, 054511 (2016). DOI:10.1103/PhysRevB.94.054511
[2] S. Datta, S. Howlader, Arushi, R. P. Singh, G. Sheet, Phys. Rev. B 105, 094504 (2022). DOI:10.1103/PhysRevB.105.094504
[3] Y. Wang, R. Lortz, Yu. Paderno, V. Filippov, S. Abe, U. Tutsch, A. Junod, Physical Review B 72, 024548 (2005). DOI:10.1103/physrevb.72.024548
[4] V. Moshchalkov, M. Menghini, T. Nishio, Q.H. Chen, A.V. Silhanek, V.H. Dao, L.F. Chibotaru, N.D. Zhigadlo, J. Karpinski, Phys. Rev. Lett. 102, 117001 (2009). DOI: 10.1103/PhysRevLett.102.117001
[5] E. Babaev, Physica C: Superconductivity and its Applications 533, 20 (2017). DOI:10.1016/j.physc.2016.08.003
[6] A. Backs, A. Al-Falou, A. Vagov, P. Bu00a8oni and S. Mu00a8uhlbauer, Phys. Rev. B 107, 174527 (2023). DOI: 10.1103/PhysRevB.107.174527.
[7] V. D. Neverov, A. E. Lukyanov, A. V. Krasavin, A. A. Shanenko, M. D. Croitoru, A. Vagov, Phys. Rev. B 110, 054502 (2024). DOI: 10.1103/PhysRevB.110.054502
[8] A.N. Moroz, V.A. Kashurnikov, I.A. Rudnev, A.N. Maksimova, J. Phys.: Condens. Matter 33, 145902 (2021). DOI: 10.1088/1361-648X/abdce7
[9] A.N. Maksimova, V.A. Kashurnikov, A.N. Moroz, I.A. Rudnev, Phys. Solid State 63, 64 (2021). DOI: 10.1134/S1063783421010145
[10] W. Lawrence, S. Doniach, Theory of layer structure superconductors // Proceedings of the 12th International Conference on Low Temperature Physics. Kyoto, 1971 u2e3a Kyoto: Academic Press of Japan (1971), p. 361.
[11] A.N. Maksimova, V.A. Kashurnikov, A.N. Moroz, D.M. Gokhfeld, J Supercond Nov Magn 35, 283 (2022). DOI: 10.1007/s10948-021-06067-7
[12] X.B. Xu, H. Fangohr, S.Y. Ding, F. Zhou1, X.N. Xu, Z.H. Wang, M. Gu, D.Q. Shi, S.X. Dou, Phys. Rev. B 83, 014501 (2011). DOI: 10.1103/PhysRevB.83.014501
[13] A.N. Maksimova, A.N. Moroz, I.A. Rudnev, S.V. Pokrovskii, V.A. Kashurnikov, Phys. Scr. 99, 105938 (2024). DOI: 10.1088/1402-4896/ad729e
[14] V. A. Kashurnikov, A. N. Maksimova, I. A. Rudnev, A. N. Moroz, Phys. Metals Metallogr. 122, 434 (2021). DOI: 10.1134/S0031918X21050057
[15] N. Pompeo, E. Silva, M. Ausloos, R. Cloots, Journal of Applied Physics 103, 103912 (2008). DOI: 10.1063/1.2930895
[16] Yu.A. Izyumov, E.Z. Kurmaev, Uspekhi fizicheskih nauk. 118, 53 (1976). DOI: 10.3367/UFNr.0118.197601b.00533