Menu Close

Issue 1(6), pp. 34-45, 2025

Article

Modelling of normal zone propagation processes in current-carrying windings based on high-temperature superconductors

I. V. Martirosian

NRNU MEPhI, Kashirskoe sh., 31, 115409 Moscow, Russia

e-mail: mephizic@gmail.com

D. A. Aleksandrov

NRNU MEPhI, Kashirskoe sh., 31, 115409 Moscow, Russia

S.V. Pokrovskii

NRNU MEPhI, Kashirskoe sh., 31, 115409 Moscow, Russia

V. V. Anishchenko

NITU “MISIS”, Leninsky Prospekt, 4, 119049 Moscow, Russia

DOI: https://doi.org/10.62539/2949-5644-2025-6-1-34-45

Abstract

Here is the abstract of the paper: This paper presents the results of numerical modelling of normal zone propagation processes in current-carrying windings based on ribbon high-temperature superconducting composites. Verification of the numerical model is performed by comparing the calculated normal zone propagation velocity with the analytical solution for a single HTS tape. On the basis of the developed numerical model, the heat propagation processes in insulated and non-insulated galette HTS windings have been analyzed and compared. It is shown that the longitudinal speed of normal zone propagation in the uninsulated winding is more than 2.5 times lower than in the winding with thermal and electrical insulation.

Keywords: composite HTS tapes, normal zone propagation velocity, non-insulated HTS windings, FEM modeling.

References

[1] Y.G. Kim, S. Hahn, K.L. Kim, O.J. Kwon, H. Lee, IEEE Transactions on Applied Superconductivity 22, 5200604 (2012). DOI: 10.1109/TASC.2011.2181931
[2] M. Mahamed, M. Yazdani-Asrami, V. Behjat, A. Yazdani, M. Sharifzadeh, Superconductivity 3, 100021 (2022). DOI: 10.1016/j.supcon.2022.100021
[3] A.B. Carlos, S.L. Jérika, Y.S. Carlos, F. Ernesto Ruppert,  Journal of Physics: Conference Series 234, 032002 (2010).
[4] L. Liang, Y. Wang, P. Pang, Z. Yan, Z. Deng, Journal of Magnetism and Magnetic Materials 604, 172283 (2024). DOI: 10.1088/1742-6596/234/3/032002
[5] K. Higashikawa, T. Nakamura, M. Sugano, K. Shikimachi, N. Hirano, S. Nagaya, IEEE Transactions on Applied Superconductivity 18, 758 (2008). DOI: 10.1109/TASC.2008.921890
[6] L. Guo, H. Liu, Q. Guo, Y. Shi, F. Liu, H. Ma, T. Li, L. Lei, IEEE Transactions on Applied Superconductivity 30, 1 (2020). DOI: 10.1109/TASC.2020.2981273
[7] T. Ito, S. Fukui, H. Kawashima, Y. Ogata, M. Furuse, T. Watanabe, S. Nagaya, J. Ogawa, IEEE Transactions on Applied Superconductivity 32, 1 (2022). DOI: 10.1109/TASC.2021.3136801
[8] Y. Zhai, C. Niu, X. Liu, F. Wang, J. Liu, Q. Wang, IEEE Transactions on Applied Superconductivity 32, 1 (2022). DOI: 10.1109/TASC.2022.3157253
[9] H. Maeda, Y. Yanagisawa, IEEE Transactions on Applied Superconductivity 24, 1 (2014). DOI: 10.1109/TASC.2013.2287707
[10] M. Marchevsky, Instruments 5, 27 (2021). DOI: 10.3390/instruments5030027
[11] J. Choi, C.S. Hwang, C.K. Lee, S.K. Kim, M. Park, I.K. Yu, Journal of Physics: Conference Series 871, 012086 (2017). DOI: 10.1088/1742-6596/871/1/012086
[12] S. Hahn, D.K. Park, J. Bascunan, Y. Iwasa, IEEE Transactions on Applied Superconductivity 21, 1592 (2011). DOI: 10.1109/TASC.2010.2093492
[13] S. Yoon, K. Cheon, H. Lee, S.-H. Moon, S.-Y. Kim, Y. Kim, S.-H. Park, K. Choi, G.-W. Hong, Physica C: Superconductivity 494, 242 (2013). DOI: 10.1016/j.physc.2013.05.010
[14] S. Hahn, Y. Kim, D. Keun Park, K. Kim, J.P. Voccio, J. Bascuñán, Y. Iwasa, Applied Physics Letters 103, 173511 (2013). DOI: 10.1063/1.4826217
[15] M. Marchevsky, S. Prestemon, O. Lobkis, R. Roth, D.C.v.d. Laan, J.D. Weiss, IEEE Transactions on Applied Superconductivity 32, 1 (2022).
[16] R. Heller, P. Blanchier, W.H. Fietz, M.J. Wolf, IEEE Transactions on Applied Superconductivity 29, 1 (2019). DOI: 10.1109/TASC.2019.2917154
[17] H. Song, M.W. Davidson, J. Schwartz, Superconductor Science and Technology 22, 062001 (2009). DOI: 10.1088/0953-2048/22/6/062001
[18] J.R. Hull, M.N. Wilson, L. Bottura, L. Rossi, M.A. Green, Y. Iwasa, S. Hahn, J.-L. Duchateau, S.S. Kalsi, Applied Superconductivity: Handbook on Devices and Applications // Superconducting Magnets / Book Editor(s):Paul Seidel. — Wiley‐VCH Verlag GmbH & Co. KGaA, 2015. DOI: 10.1002/9783527670635.ch4
[19] D. Park, J. Bascuñán, Y. Li, W. Lee, Y. Choi, Y. Iwasa, IEEE Transactions on Applied Superconductivity 31, 1 (2021). DOI: 10.1109/TASC.2021.3064006
[20] H.W. Kim, Y.S. Jo, S.W. Kim, IEEE Transactions on Applied Superconductivity 33, 1 (2023). DOI: 10.1109/TASC.2023.3266708
[21] V.V. Zubko, S.M. Ryabov, S.S. Fetisov, V.S. Vysotsky, Physics Procedia 67, 619 (2015). DOI: 10.1016/j.phpro.2015.06.105
[22] J. Van Nugteren. Normal zone propagation in a YBCO superconducting tape: A technical report performed within the framework of a graduation assignment as part of the Applied Physics Master of Science programme / J. Van Nugteren. — The Netherlands, (2012).
[23] S.V. Pokrovskii, I.V. Martirosian, D.A. Aleksandrov, Modern Transportation Systems and Technologies 10, 537 (2024). DOI: 10.17816/transsyst637429
[24] A. Bejan, Heat transfer: Evolution.: design and performance, John Wiley & Sons, 2022.
[25] R.H. Bellis, Y. Iwasa, Cryogenics 34, 129 (1994).
[26] E.E. Salazar, R.A. Badcock, M. Bajko, B. Castaldo, M. Davies, J. Estrada, V. Fry, J.T. Gonzales, P.C. Michael, M. Segal, R.F. Vieira, Z.S. Hartwig, Superconductor Science and Technology 34, 035027 (2021).