Menu Close

Issue 1, 2024, p. 8-21

Review

Cooling of HTS magnets with solid nitrogen

D.I. Shutova

National Research Centre “Kurchatov Institute”, Kurchatov Sq. 1, 123182, Moscow, Russia

e-mail: shutovadi@mail.ru

DOI: https://doi.org/10.62539/2949-5644-2024-0-1-8-21

Abstract

The review summarizes some domestic and international publications for 2018 – 2023 devoted to the cooling of superconducting devices by means of solid nitrogen. The scope of possible application of this traditional coolant in an unusual phase condition is very extensive. Today, scientists from different countries use solid nitrogen to cool prototypes of high-temperature superconducting magnets intended for electric aircraft motors, magnetic separators, inductive energy storage devices, high-speed Maglev trains, NMR spectrometers, etc. The review briefly describes methods for creating an operating temperature of 10 – 60 K, the main characteristics of HTS devices in solid nitrogen, as well as pros & cons and prospects of this relatively new solution in cryogenics.

Keywords: solid nitrogen; HTS; cryogenics; cooler, magnetic separation; Maglev; NMR; SMES; aircraft motor; stability.

References

[1] E. Sheehan, et al., IOP Conf. Ser.: Mater. Sci. Eng., 278, 012182 (2017). DOI: 10.1088/1757-899X/278/1/012182

[2] O. P. Anashkin, et al., Cryogenics, 42, 295 – 297 (2002). DOI: 10.1016/S0011-2275(02)00037-1

[3] H. Miyazaki, et al., IEEE Trans. Appl. Supercond., 27, 4, 4300805 (2017). DOI: 10.1109/TASC.2017.2656858

[4] L. Liu, et al., IEEE Trans. Appl. Supercond., 28, 8, 6602905 (2018). DOI: 10.1109/TASC.2018.2872818

[5] J. Ling et al., Supercond. Sci. Technol., 30, 024011 (2017). DOI: 10.1088/1361-6668/30/2/024011

[6] Y. Iwasa, Supercond. Sci. Technol., 30, 053001 (2017). DOI: 10.1088/1361-6668/aa5fed

[7] T. Nakamura, et al., Physica C, 372, 1434 – 1437 (2002). DOI: 10.1016/S0921-4534(02)01047-X

[8] Y. Iwasa, Case studies in superconducting magnets — design and operational issues. 2nd ed New York: Springer (2009).

[9] P. Stachowiak, et al., Phys. Rev. B, 50, 54 (1994). DOI: 10.1103/PhysRevB.50.543

[10] Diev D.N., et al., Physics of Atomic Nuclei, 81, 11, 1554–1562 (2018). DOI: 10.1134/S1063778818120037

[11] D. N. Diev, et al., REBCO split coil magnet for high gradient magnetic separation // Proc. 27th ICEC & ICMC, Oxford, England, 3-7th September 2018, 502, 012105 (2019). DOI: 10.1088/1757-899X/502/1/012105

[12] D. N. Diev, et al., Prog. in Supercond. and Cryogen., 20, 4, 1-5 (2019). DOI: 10.9714/2018.psac.2018.20.4.001

[13] D. N. Diev, et al., Chernaya metallurgiya, 76, 11, 1097-1106 (2020). DOI: 10.32339/0135-5910-2020-11-1097-1106

[14] J. Kováč, et al., Scientific Reports, 12, 16454 (2022). DOI: 10.1038/s41598-022-20625-6.

[15] L. Liu et al., IEEE Trans. Appl. Supercond., 28, 4, 4603705 (2018). DOI: 10.1109/TASC.2018.2814741

[16] L. Liu, et al., IEEE Trans. Appl. Supercond., 28, 8, 6602905 (2018). DOI:10.1109/TASC.2018.2872818

[17] Y. Li, et al., IEEE Trans. Appl. Supercond., 28, 4, 4603606 (2018). DOI:10.1109/TASC.2018.2814960.

[18] E. Yu. Klimenko, V. I. Omel’yanenko, Lokomotiv-inform, 01-02, 41-47 (2017).

[19] J. Mun, et al., IEEE Trans. Appl. Supercond., 31, 5, 3601405 (2021). DOI: 10.1109/TASC.2021.3060692

[20] D. Park, et al., IEEE Trans. Appl. Supercond., 31, 5, 300206 (2021). DOI:10.1109/TASC.2021.3064006