Article
Optimization of HTS DC and AC cables with take account longitudinal magnetic field effect
V.V. Zubko
All-Russian scientific research and development cable institute («VNIIKP»), 111024, Moscow, Russia
Moscow Aviation Institute (MAI), 125993, Moscow, Russia
e-mail: vasily.zubko@gmail.com
S.Yu. Zanegin
All-Russian scientific research and development cable institute («VNIIKP»), 111024, Moscow, Russia
Moscow Aviation Institute (MAI), 125993, Moscow, Russia
S.S. Fetisov
All-Russian scientific research and development cable institute («VNIIKP»), 111024, Moscow, Russia
V.S. Vysotsky
All-Russian scientific research and development cable institute («VNIIKP»), 111024, Moscow, Russia
A.A. Nosov
All-Russian scientific research and development cable institute («VNIIKP»), 111024, Moscow, Russia
Moscow Aviation Institute (MAI), 125993, Moscow, Russia
E.S. Otabe
Kyushu Institute of Technology, 680 u2013 4, Iizuka, Japan
T. Akasaka
Superconductivity and Cryogenics, Maglev Systems Technology Division, Railway Technical Research Institute, 2-8-38 Hikaricho, Kokubunji, Tokyo 185-8540, Japan
Abstract
It is known that in magnetic fields parallel to the transport current, an increase of the critical current is observed in most low-temperature and high-temperature superconductors — the effect of a longitudinal magnetic field (LMFE). LMFE has been theoretically predicted and experimentally confirmed in many studies. This article presents various methods for optimizing power coaxial cables based on high-temperature superconductors (HTS), considering LMFE. LMFE provides a higher current-carrying capacity of HTS DC cables and higher stability for HTS power AC cables, including lower AC losses. The results of optimization of HTS cables for both DC and AC applications with consideration of LMFE are presented and discussed. Two methods for calculating the magnetic field in coaxial HTS cables are presented: analytical and using the finite element method. The results of AC loss calculations and measurements for HTS cables are also presented.
Keywords: HTS cables, longitudinal magnetic field effect, numerical analysis.
References
[1] S. S. Fetisov, et al, IEEE Trans. Appl. Supercond. 32, 4 (2022). DOI: 10.1109/TASC.2021.3137763
[2] Yu. F. Bychkov, et al, JETP Lett. 9, 12, 652 (1969).
[3] B. ten Haken, et al, IEEE Trans. Magn. 28, 755 (1992). DOI: 10.1109/20.119989
[4] C.J. Bergeron, Appl. Phys. Lett. 3, 171 (1963). DOI: 10.1063/1.1753920
[5] T. Matsushita Jpn. J. Appl. Phys. 51, 010111 (2012). DOI 10.1143/JJAP.51.010111
[6] T. Matsushita, et al, Supercond. Sci. Technol., 25, 125009 (2012). DOI 10.1088/0953-2048/25/12/125009
[7] V.S. Vyatkin, et al, IEEE Trans. Appl. Supercond., 25, 4, 6606207 (2015). DOI: 10.1109/TASC.2015.2427357
[8] Y. Kinoshita, et al, J. Phys., Conf. Ser. 1975, 012037 (2021). DOI: 10.1088/1742-6596/1975/1/012037
[9] Ansys Multiphysics, www.ansys.com
[10] S.S. Fetisov, et al, IEEE Trans. Appl. Supercond. 28, 4, 5400905 (2018). DOI: 10.1109/TASC.2018.2821708
[11] V.V. Zubko, et al, J. Phys., Conf. Ser. 2043, 012004 (2021). DOI 10.1088/1742-6596/2043/1/012004
[12] V.V. Zubko, et al, IEEE Trans. Appl. Supercond. 26, 3, 8202005 (2016). DOI: 10.1109/TASC.2016.2535151
[13] J.R. Cave, et al, J. Phys. Colloques, 39 (1978). DOI: 10.1051/jphyscol:19786276
[14] T. Matsushita, J. Phys. Soc. Jpn, 54, 1066 (1985). DOI: 10.1143/JPSJ.54.1066