Menu Close

Issue 1, 2024, p. 53-62

Article

Optimization of HTS DC and AC cables with take account longitudinal magnetic field effect

V.V. Zubko

All-Russian scientific research and development cable institute («VNIIKP»), 111024, Moscow, Russia

Moscow Aviation Institute (MAI), 125993, Moscow, Russia

e-mail: vasily.zubko@gmail.com

S.Yu. Zanegin

All-Russian scientific research and development cable institute («VNIIKP»), 111024, Moscow, Russia

Moscow Aviation Institute (MAI), 125993, Moscow, Russia

S.S. Fetisov

All-Russian scientific research and development cable institute («VNIIKP»), 111024, Moscow, Russia

V.S. Vysotsky

All-Russian scientific research and development cable institute («VNIIKP»), 111024, Moscow, Russia

A.A. Nosov

All-Russian scientific research and development cable institute («VNIIKP»), 111024, Moscow, Russia

Moscow Aviation Institute (MAI), 125993, Moscow, Russia

E.S. Otabe

Kyushu Institute of Technology, 680 u2013 4, Iizuka, Japan

T. Akasaka

Superconductivity and Cryogenics, Maglev Systems Technology Division, Railway Technical Research Institute, 2-8-38 Hikaricho, Kokubunji, Tokyo 185-8540, Japan

DOI: https://doi.org/10.62539/2949-5644-2024-0-1-53-62

Abstract

It is known that in magnetic fields parallel to the transport current, an increase of the critical current is observed in most low-temperature and high-temperature superconductors — the effect of a longitudinal magnetic field (LMFE). LMFE has been theoretically predicted and experimentally confirmed in many studies. This article presents various methods for optimizing power coaxial cables based on high-temperature superconductors (HTS), considering LMFE.  LMFE provides a higher current-carrying capacity of HTS DC cables and higher stability for HTS power AC cables, including lower AC losses. The results of optimization of HTS cables for both DC and AC applications with consideration of  LMFE  are presented and discussed. Two methods for calculating the magnetic field in coaxial HTS cables are presented: analytical and using the finite element method. The results of AC loss calculations and measurements for HTS cables are also presented.

Keywords: HTS cables, longitudinal magnetic field effect, numerical analysis.

References

[1] S. S. Fetisov, et al, IEEE Trans. Appl. Supercond. 32, 4 (2022). DOI: 10.1109/TASC.2021.3137763

[2] Yu. F. Bychkov, et al, JETP Lett. 9, 12, 652 (1969).

[3] B. ten Haken, et al, IEEE Trans. Magn. 28, 755 (1992). DOI: 10.1109/20.119989

[4] C.J. Bergeron, Appl. Phys. Lett. 3, 171 (1963). DOI: 10.1063/1.1753920

[5] T. Matsushita Jpn. J. Appl. Phys. 51, 010111 (2012). DOI 10.1143/JJAP.51.010111

[6] T. Matsushita, et al, Supercond. Sci. Technol., 25, 125009 (2012). DOI 10.1088/0953-2048/25/12/125009

[7] V.S. Vyatkin, et al, IEEE Trans. Appl. Supercond., 25, 4, 6606207 (2015). DOI: 10.1109/TASC.2015.2427357

[8] Y. Kinoshita, et al, J. Phys., Conf. Ser. 1975, 012037 (2021). DOI: 10.1088/1742-6596/1975/1/012037

[9] Ansys Multiphysics, www.ansys.com

[10] S.S. Fetisov, et al, IEEE Trans. Appl. Supercond. 28, 4, 5400905 (2018). DOI: 10.1109/TASC.2018.2821708

[11] V.V. Zubko, et al, J. Phys., Conf. Ser. 2043, 012004 (2021). DOI 10.1088/1742-6596/2043/1/012004

[12] V.V. Zubko, et al, IEEE Trans. Appl. Supercond. 26, 3, 8202005 (2016). DOI: 10.1109/TASC.2016.2535151

[13] J.R. Cave, et al, J. Phys. Colloques, 39 (1978). DOI: 10.1051/jphyscol:19786276

[14] T. Matsushita, J. Phys. Soc. Jpn, 54,  1066 (1985). DOI: 10.1143/JPSJ.54.1066