Menu Close

Issue 1, 2024, p. 41-52

Review

No-insulation HTS coils: methods for describing electromagnetic processes

D. S. Yashkin

NRC “Kurchatov Institute”, 123182, pl. akad. Kurchatova, d. 1, Moscow, Russia

e-mail: yashkin_ds@nrcki.ru

DOI: https://doi.org/10.62539/2949-5644-2024-0-1-41-52

Abstract

Magnetic systems based on no-insulated high temperature superconductor coils (NI HTS) are finding increasingly practical applications. They became a scientific and industrial tool with enormous prospects. Their main advantage is that they are resistant to burnout due to protection in the form of a “built-in” shunt resistance. However, a serious disadvantage of NISO is the lack of a clearly defined current flow path, which makes it difficult to both describe the characteristics of such coils and predict their behavior under given conditions. This review shows the main methods for describing electromagnetic processes occurring in NI HTS and analyzes the limits of applicability of these methods.

Keywords: NI HTS, superconducting magnet, equivalent circuit.

References

[1] H. K. Onnes, KNAW Proceedings, 15, 1406, (1913).

[2] V. E. Keilin and L. B. Lugansky, IEEE Trans. Appl. Supercond., 11, 1454, (2001). DOI: 10.1109/77.920046.

[3] S. Hahn, et al., IEEE Trans. Appl. Supercond., 21, 1592, (2010). DOI: 10.1109/TASC.2010.2093492

[4] S. Choi, et al., IEEE Trans. Appl. Supercond., 22, 4904004, (2011). DOI: 10.1109/TASC.2011.2175892

[5] S. Hahn, et al., Supercond. Sci. Technol., 29, 105017, (2016). DOI 10.1088/0953-2048/29/10/105017

[6] E. P. Krasnoperov et al., Izmeritel’naya tekhnika, 9, 41, (2021). DOI: 10.32446/0368-1025it.2021-9-41-46

[7] K. L. Kim, et al., IEEE Trans. Appl. Supercond., 24, 1, (2013). DOI: 10.1109/TASC.2013.2283855

[8] D. G. Yang, et al. IEEE Trans. Appl. Supercond., 25, 1, (2014).

[9] S. Hahn, et al., IEEE Trans. Appl. Supercond., 23, 4601705, (2013). DOI: 10.1109/TASC.2013.2240756

[10] K. R. Bhattarai, et al., IEEE Trans. Appl. Supercond., 27, 1 (2017). DOI: 10.1109/TASC.2017.2669962

[11] Y. H. Choi, et al., Supercond. Sci. Technol., 24, 125013, (2011). DOI 10.1088/0953-2048/24/12/125013

[12] S. An, et al., IEEE Trans. Appl. Supercond., 31, 1, (2021). DOI: 10.1109/TASC.2021.3066197

[13] U. Bong, et al., Supercond. Sci. Technol., 34, 085003, (2021). DOI 10.1088/1361-6668/ac0759

[14] T. Wang, et al., IEEE Trans. Appl. Supercond., 25, 1, (2015). DOI: 10.1109/TASC.2010.2089595

[15] N. Gvozdenovic, et al., European Microwave Conference, IEEE, 1103, (2013). DOI: 10.23919/EuMC.2013.6686854

[16] H. Kobayashi, et al., IEEE Trans. Appl. Supercond., 33, 1, (2023). DOI: 10.1109/TASC.2023.3251301

[17] M. Cho, et al., IEEE Trans. Appl. Supercond., 29, 1 (2019). DOI: 10.1109/TASC.2019.2899501

[18] S. Hahn, et al., J Cryog. Supercond. Soc. Japan, 53, 2, (2018). DOI: 10.2221/JCSJ.53.2

[19] D. G. Yang, et al., Supercond. Sci. Technol., 26, 105025, (2013). DOI: 10.1088/0953-2048/26/10/105025

[20] S. Noguchi, et al., IEEE Trans. Appl. Supercond., 28, 1, (2018). DOI: 10.1109/TASC.2018.2799573

[21] S. Chen, et al., IEEE Trans. Appl. Supercond., 29, 1, (2019). DOI: 10.1109/TASC.2019.2897868

[22] L. Qin, et al., Supercond. Sci. Technol., 34, 075002, (2021). DOI: 10.1088/1361-6668/abfc28

[23] D.S. Yashkin et al., Vestnik VIT «ERA», 3, 54 (2022). DOI: 10.56304/S2782375X22020188

[24] S. Noguchi, et al., Supercond. Sci. Technol., 33, 11500,5 (2020). DOI 10.1088/1361-6668/abb35b

[25] Y. Wang, et al., Supercond. Sci. Technol., 28, 045017, (2015). DOI: 10.1088/0953-2048/28/4/045017

[26] S. Venuturumilli, et al., AIP Advances, 13, 3 (2023). DOI: 10.1063/5.0135291

[27] D. G. Whyte, et al., IEEE Trans. Appl. Supercond., 34, 1 (2023). DOI: 10.1109/TASC.2023.3332613