Article
Study of magnetic flux relaxation in a micron-sized HTS with intrinsic and artificial pinning
А. N. Мaksimova
National research nuclear university MEPhI, 115409 Moscow, Russia
e-mail: anmaksimova@mephi.ru
А. N. Moroz
National research nuclear university MEPhI, 115409 Moscow, Russia
V. А. Kashurnikov
National research nuclear university MEPhI, 115409 Moscow, Russia
Abstract
The Monte Carlo method was used to study the relaxation processes of the trapped magnetic flux in a micron-wide superconducting bridge. Calculations are performed for typical parameters of the high-temperature superconductor YB2Cu3O7-x. The cases of the presence of only its own pinning and artificial in the form of submicron antidot holes have been investigated. It is shown that the presence of holes reduces the trapped magnetic flux. It is also shown that the dependence of the trapped flow on time for a micron bridge does not agree with the collective creep model, and the relaxation rate increases with temperature.
Keywords: HTS, pinning, magnetic relaxation, antidots
References
[1] E. Trabaldo et al., Supercond. Sci. Technol., 32, 073001 (2019). DOI: 10.1088/1361-6668/ab1814
[2] R.F. Voss, R.B. Laibowitz, A.N. Broers, Appl. Phys. Lett., 37, 656-658 (1980). DOI: 10.1063/1.92026
[3] G. Papari, et al., Physica C, 506, 188-194 (2014). DOI: 10.1016/j.physc.2014.06.017
[4] M.R. Koblischka et al., Materials, 12, 853 (2019). DOI: 10.3390/ma12060853
[5] M.R. Koblischka et al., Supercond. Sci. Technol., 33, 044008 (2020). DOI: 10.1088/1361-6668/ab72c3
[6] Maksimova, et al., J Supercond. Nov. Magn., 1-8 (2022). DOI: 10.1007/s10948-021-06067-7
[7] D. M. Gokhfeld, et al., Phys. C: Supercon. Appl., 600 (2022), 1354106. DOI: 10.1016/j.physc.2022.1354106
[8] M. Kato, H. Kitago H., J Phys.: Conf. Ser., 871, 012028 (2017). DOI: 10.1088/1742-6596/871/1/012028
[9] T. Kusafuka, M. Kato, O. Sato, J Phys.: Conf. Ser., 1293, 012021 (2019). DOI: 10.1088/1742-6596/1293/1/012021
[10] W.E. Lawrence, S. Doniach S. Proceedings of LT 12, Kyoto (1971).
[11] A.N. Moroz, et al., J Phys.: Cond. Mat., 33, 145902 (2021). DOI: 10.1088/1361-648X/abdce7
[12] A.N. Moroz, et al., J Phys.: Cond. Mat. 33, 355901 (2021). DOI: 10.1088/1361-648X/ac0be9
[13] Y. Yeshurun, A.P. Malozemoff, A. Shaulov, Rev. Mod. Phys., 68, 911 (1996). DOI: 10.1103/RevModPhys.68.911